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Abstract: The stability analysis of a linear invariant control system is based mainly on its characteristic equation. There are 
various methods to examine, to do analysis, and to design a control system. Those methods become less effective and more 
complicated for use when those methods are used for a high order of an open loop transfer function that has several poles and 
several zeros.  In this research work a new method was developed to find the gains at marginal stability and the intersection 
points with the imaginary axis of a single-input and single-output of a linear invariant control system by using two new 
formulas. First formula is used to construct a new polynomial where its roots are the intersection points with the imaginary 
axis of the s-plane, and a second formula is used to calculate the gains at the marginal stability of the system. The coefficients 
of the characteristic equation’s polynomial of the control system are substituted in the first formula to obtain a new polynomial. 
The roots of the obtained polynomial are substituted in the second formula to obtain the gains at marginal stability. In this 
research work the derivation of the polynomial’s construction formula, its mathematical proof, and the derivation of the gains 
formula at marginal stability are presented. The proposed Formulization method is compared with another three common 
methods in the solution of three examples. The used methods are the proposed method, Routh-Hurwitz criterion, Root Locus 
technique, and the complex variable s on the imaginary axis. The chosen examples are three control systems where their 
transfer functions are different in order and in complexity, going from low to high. The comparison shows that the 
Formulization method is accurate and needs less mathematical operations by the user. It is applicable for any order of a single-
input and single-output of invariant control systems. It is an effective method especially for a higher order and for more 
complicated transfer functions of the control systems. 

Keywords: Gains at marginal stability; Gains calculation at the intersection points; Intersection points with the imaginary axis; 
Marginal stability; Polynomial of intersection points. 

1. INTRODUCTION 
The characteristic equation of the closed loop control system is obtained by equating the denominator of its transfer function 
to zero. The denominator’s roots of the open loop transfer function are called the poles and the roots of the numerator are 
called the zeros. One of the most important properties of a control system is its stability. In theory, a time invariant control 
system is stable if its output remains bounded when excited by a bounded input, Bounded Input Bounded Output (BIBO). 
Unstable system is a system in which its output does not return to steady state for a bounded change in its input. The system's 
state between the two previous states is the border of stability, and it is called a state of marginal stability of the system [1, 2]. 
A conditionally stable system if it is stable for a certain range of gain’s values.   

The absolute stability of a system is referred to a stable system or unstable system, while the system relative stability is 
referred to how far away be the system's stability from its border of stability. System stability can be classified based on its 
type of stability such as absolute stability of the system, conditional stability of the system, and marginal stability of the system. 
Absolutely stable system if all its poles are in the left half of the s-plane [3].  While a marginally stable system if it's output to 
a bounded input may have a bounded offset, or a sustained oscillations of constant amplitude and constant frequency. 
Theoretically the system becomes a marginally stable system if it has non-repeated imaginary poles with zero real parts. 

It is known that at the state of marginal stability any perturbed input of the control system moves the system to an unstable 
state. Therefore, this state of stability is a risky state. Consequently, the design of control systems is to keep the system away 
from this state.  This state is very important to know because it is the border of system stability. The location of the poles of 
the system’s transfer function on the complex plane, s-plane, determines the system stability. To have a stable control system 
requires that all roots of the closed loop characteristic equation are located on the left side of the s-plane, or mathematically, 
the real part of every root must be negative. If there are roots with zero real parts and non-repeated parts, they are on the 
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imaginary axis of the s-plane, and the system is marginally stable. Therefore, moving the system transfer function poles to the 
left of the imaginary axis of the s-plane increases the system relative stability [4]. To avoid loss of control, and may be a 
damage to equipment, the system internal signal must be bounded and give a bounded output. This means that the system is 
BIBO stable. Stability of linear feedback systems can be determined by the real part of its closed-loop transfer function's poles. 

For practical analysis and design of a control system it is more useful to know the relative stability, which means how 
much the loop gain can be changed before the system becomes unstable, gain margin. One way to assess the relative stability 
of a system is to use root locus technique to find the range of the gain values for a stable system [5, 6]. Root locus technique 
shows the effect of the system gain value on the system stability and the transient response of the system. The gain range is 
determined by knowing the intersection points of the root loci with the imaginary axis on the s-plane. At the intersection points, 
the control system stability may change state from stable to unstable or versa.  One method for finding the intersection points 
and the corresponding gains’ values is Routh-Hurwitz criterion [7]. Routh-Hurwitz stability criterion is an analytical technique 
that gives the number of roots with positive real part, where poles with a positive real part are the unstable roots, [8, 9]. The 
desired performance of a control system is achieved by tuning its controller’s gains. A basic tuning method and its 
modifications are based on the ultimate gain values at the intersection points with the imaginary axis, where the system is 
marginally stable. As a result, there is a necessity to obtain the limit value of the gain. 

The focus in this research work was the development of a new method for finding the imaginary roots of the characteristic 
equation and the corresponding marginal gains by using derived two formulas.  One formula is for constructing a new 
polynomial where its roots are the intersection points with the imaginary axis of the s-plane, and a second formula is used to 
calculate the corresponding gains for a single-input single-output of a linear invariant control system. The expected outcome 
is having a new method to calculate the critical gain and imaginary axis crossing, which is easier, systematic process, and more 
flexible for higher order systems. 

2. THE DERIVATION OF THE CONDITIONS FOR ZERO RESIDUE 
Based on the Routh-Hurwitz criterion, the row which proceeds a row of zeros in the Routh array gives a polynomial called the 
auxiliary equation. The auxiliary equation is a factor of the characteristic equation of the system. In this case there are roots of 
the characteristic equation equally spaced from the origin of the s-plane. The equally spaced roots may be on the imaginary 
axis. If the roots of the auxiliary equation are an imaginary number with zero real part, then the root locus graph crosses the 
imaginary axis. The simple form of the auxiliary equation for imaginary roots is 
 

     (𝑠𝑠 + 𝑗𝑗𝑗𝑗)(𝑠𝑠 − 𝑗𝑗𝑗𝑗) = 𝑠𝑠2 + 𝜔𝜔2                                                                 (1) 
 

If the polynomial, Equation (1), is a factor of the characteristic equation, the residue of the division of the characteristic 
equation by this factor is zero. In this research work the general form of characteristic equations for various degrees are divided 
on the polynomial, Equation (1), to get the division residues. Setting the expression of the residue to zero gives two conditions 
for being Equation (1) a factor of the characteristic equation. Those conditions are two algebraic equations which are based on 
the coefficients of the denominator's polynomial and numerator polynomial of the system open loop transfer function. 

The characteristic equation of a closed loop of a single input-single output control system is 
 

1 + 𝐾𝐾𝐾𝐾(𝑠𝑠)𝐻𝐻(𝑠𝑠) = 0.                                                                    (2) 
 
where G(s) is the forward transfer function and H(s) is the feedback of the control system, Figure 1. In this case the parameter 
of interest is the static gain K. The rational form of a single input-single output system’s transfer function,𝐺𝐺(𝑠𝑠)𝐻𝐻(𝑠𝑠) is 

                                       

𝐺𝐺(𝑠𝑠)𝐻𝐻(𝑠𝑠) =
𝑁𝑁(𝑠𝑠)
𝐷𝐷(𝑠𝑠) =

𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚 + 𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1 + ⋯+ 𝑏𝑏1𝑠𝑠 + 𝑏𝑏0
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝑠𝑠 + 𝑎𝑎0

. 

                                  (3) 
Substitution of Equation (3) into Equation (2) gives an explicit form of the characteristic equation as a function of the complex 
variable s. The coefficients of the characteristic equation's polynomial are the coefficients of the open loop transfer function's 
polynomials such as 
 

 (𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝑠𝑠 + 𝑎𝑎0) + 𝐾𝐾(𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚 + 𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1 + ⋯+ 𝑏𝑏1𝑠𝑠 + 𝑏𝑏0) = 0.                        (4) 
 
 

 
Figure 1. Block diagram of single input single output of control system 
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The general form of Equation (4) is 
                    𝑐𝑐𝑛𝑛𝑠𝑠𝑛𝑛 + 𝑐𝑐𝑛𝑛−1𝑠𝑠𝑛𝑛−1 + ⋯+ 𝑐𝑐1𝑠𝑠 + 𝑐𝑐𝑜𝑜 = 0.                                                   (5) 

 
where          

                  𝑐𝑐𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝐾𝐾𝑏𝑏𝑖𝑖 .                                                                            (6) 
 

As an example of the derivation of the two conditions for being Equation (1) a factor of the characteristic equation, a third-
degree characteristic equation is considered.  The general form of a third-degree characteristic equation is   

 
                    𝑐𝑐3𝑠𝑠3 + 𝑐𝑐2𝑠𝑠2 + 𝑐𝑐1𝑠𝑠 + 𝑐𝑐𝑜𝑜 = 0.                                                              (7) 

 
The remainder from a long division of Equation (7) as the dividend, on Equation (1) as the divisor, is 
 

(𝑐𝑐1 − 𝑐𝑐3𝜔𝜔2)𝑠𝑠 + (𝑐𝑐𝑜𝑜 − 𝑐𝑐2𝜔𝜔2).                                                             (8) 
 
To satisfy the condition that Equation (1) is a factor for a third-degree characteristic polynomial, the two parts of the division's 
remainder are set to zero. By doing that we obtain two conditions, and they are 
 
                                                                                                  (𝑐𝑐1 − 𝑐𝑐3𝜔𝜔2) = 0, 

(𝑐𝑐𝑜𝑜 − 𝑐𝑐2𝜔𝜔2) = 0.                                                                      (9) 
 

The solution for 𝜔𝜔 gives the values of the intersection points on the imaginary axis. Repetition of the division on Equation 
(1) of a higher degree of characteristic equations gives a similar result. The results for the quotients of the division are shown 
in Table 1, and the remainders are shown as two conditions in Table 2. 

The mathematical proof which shows that the general form of degree n of the results in Table 1 and Table 2 are correct is 
shown in Appendix A. 
 

Table 1.  The quotients of the long division for polynomials of degree 2,3,⋯ ,𝑛𝑛. 

Degree n Divisor 𝑄𝑄𝑛𝑛: Quotient    
2 𝑠𝑠2 + 𝜔𝜔2 𝑐𝑐2 
3 𝑠𝑠2 + 𝜔𝜔2 𝑐𝑐3𝑠𝑠 + 𝑐𝑐2 
4 𝑠𝑠2 + 𝜔𝜔2 𝑐𝑐4𝑠𝑠2 + 𝑐𝑐3𝑠𝑠 + 𝑐𝑐2 

−(𝑐𝑐4)𝜔𝜔2 
5 𝑠𝑠2 + 𝜔𝜔2 𝑐𝑐5𝑠𝑠3 + 𝑐𝑐4𝑠𝑠2 + 𝑐𝑐3𝑠𝑠 + 𝑐𝑐2 

−(𝑐𝑐5𝑠𝑠 + 𝑐𝑐4)𝜔𝜔2 
6 𝑠𝑠2 + 𝜔𝜔2 𝑐𝑐6𝑠𝑠4 + 𝑐𝑐5𝑠𝑠3 + 𝑐𝑐4𝑠𝑠2 + 𝑐𝑐3𝑠𝑠 + 𝑐𝑐2 

−(𝑐𝑐6𝑠𝑠2 + 𝑐𝑐5𝑠𝑠 + 𝑐𝑐4)𝜔𝜔2 
+(𝑐𝑐6)𝜔𝜔4 

7 𝑠𝑠2 + 𝜔𝜔2 𝑐𝑐7𝑠𝑠5 + 𝑐𝑐6𝑠𝑠4 + 𝑐𝑐5𝑠𝑠3 + 𝑐𝑐4𝑠𝑠2 + 𝑐𝑐3𝑠𝑠 + 𝑐𝑐2  
−(𝑐𝑐7𝑠𝑠3 + 𝑐𝑐6𝑠𝑠2 + 𝑐𝑐5𝑠𝑠 + 𝑐𝑐4)𝜔𝜔2 
+(𝑐𝑐7𝑠𝑠 + 𝑐𝑐6)𝜔𝜔4 

8 𝑠𝑠2 + 𝜔𝜔2 𝑐𝑐8𝑠𝑠6 + 𝑐𝑐7𝑠𝑠5 + 𝑐𝑐6𝑠𝑠4 + 𝑐𝑐5𝑠𝑠3 + 𝑐𝑐4𝑠𝑠2 + 𝑐𝑐3𝑠𝑠 + 𝑐𝑐2  
−(𝑐𝑐8𝑠𝑠4+𝑐𝑐7𝑠𝑠3 + 𝑐𝑐6𝑠𝑠2 + 𝑐𝑐5𝑠𝑠 + 𝑐𝑐4)𝜔𝜔2 
+(𝑐𝑐8𝑠𝑠2 + 𝑐𝑐7𝑠𝑠 + 𝑐𝑐6)𝜔𝜔4 
−(𝑐𝑐8𝑠𝑠0)𝜔𝜔6 

⋮  ⋮ 
 

n 
𝑠𝑠2 + 𝜔𝜔2 𝑄𝑄𝑛𝑛 = 𝑄𝑄𝑛𝑛−1 + 𝐶𝐶𝑛𝑛 ∑ (−1)

𝑚𝑚
2+1𝑛𝑛

𝑚𝑚=2,4,⋯ 𝑠𝑠𝑛𝑛−𝑚𝑚𝜔𝜔𝑚𝑚−2  
Or 
 𝑄𝑄𝑛𝑛 = ∑ 𝐶𝐶𝑖𝑖𝑛𝑛

𝑖𝑖=2,3,⋯ ∑ (−1)
𝑚𝑚
2+1𝑖𝑖

𝑚𝑚=2,4,⋯ 𝑠𝑠𝑖𝑖−𝑚𝑚𝜔𝜔𝑚𝑚−2 
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Table 2.  The two conditions for being (𝑠𝑠2 + 𝜔𝜔2) a factor for a polynomial of degree 2,3,⋯ ,𝑛𝑛. 

Degree n   R1: First Condition  R2: Second Condition 
2 𝑐𝑐𝑜𝑜 − 𝑐𝑐2𝜔𝜔2 = 0 𝑐𝑐1 = 0 

3 𝑐𝑐𝑜𝑜 − 𝑐𝑐2𝜔𝜔2 = 0 𝑐𝑐1 − 𝑐𝑐3𝜔𝜔2 = 0 

4 𝑐𝑐𝑜𝑜 − 𝑐𝑐2𝜔𝜔2 + 𝑐𝑐4𝜔𝜔4 = 0 𝑐𝑐1 − 𝑐𝑐3𝜔𝜔2 = 0 

5 𝑐𝑐𝑜𝑜 − 𝑐𝑐2𝜔𝜔2 + 𝑐𝑐4𝜔𝜔4 = 0 𝑐𝑐1 − 𝑐𝑐3𝜔𝜔2 + 𝑐𝑐5𝜔𝜔4 = 0 

6 𝑐𝑐𝑜𝑜 − 𝑐𝑐2𝜔𝜔2 + 𝑐𝑐4𝜔𝜔4 − 𝑐𝑐6𝜔𝜔6 = 0 𝑐𝑐1 − 𝑐𝑐3𝜔𝜔2 + 𝑐𝑐5𝜔𝜔4 = 0 

7 𝑐𝑐𝑜𝑜 − 𝑐𝑐2𝜔𝜔2 + 𝑐𝑐4𝜔𝜔4 − 𝑐𝑐6𝜔𝜔6 = 0 𝑐𝑐1 − 𝑐𝑐3𝜔𝜔2 + 𝑐𝑐5𝜔𝜔4 − 𝑐𝑐7𝜔𝜔6 = 0 

⋮ ⋮ ⋮ 

n  𝑅𝑅1 = ∑ (−1)
𝑚𝑚
2 𝑐𝑐𝑚𝑚𝜔𝜔𝑚𝑚 = 0𝑛𝑛

𝑚𝑚=0,2,4,   𝑅𝑅2 = ∑ (−1)
𝑚𝑚+3
2 𝑐𝑐𝑚𝑚𝜔𝜔𝑚𝑚−1𝑛𝑛

𝑚𝑚=1,3,5, = 0 

 

Table 3.  The gains formula for degrees 2,3,⋯ ,𝑛𝑛. 

n K first formula K second formula 
2 

𝐾𝐾 = −
𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2

𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2  𝐾𝐾 = −
𝑎𝑎1
𝑏𝑏1

 

3 
𝐾𝐾 = −

𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2

𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2  𝐾𝐾 = −
𝑎𝑎1 − 𝑎𝑎3𝜔𝜔2

𝑏𝑏1 − 𝑏𝑏3𝜔𝜔2  

4 
𝐾𝐾 = −

𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2 + 𝑎𝑎4𝜔𝜔4

𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2 + 𝑏𝑏4𝜔𝜔4  𝐾𝐾 = −
𝑎𝑎1 − 𝑎𝑎3𝜔𝜔2

𝑏𝑏1 − 𝑏𝑏3𝜔𝜔2  

5 
𝐾𝐾 = −

𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2 + 𝑎𝑎4𝜔𝜔4

𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2 + 𝑏𝑏4𝜔𝜔4  𝐾𝐾 = −
𝑎𝑎1 − 𝑎𝑎3𝜔𝜔2 + 𝑎𝑎5𝜔𝜔4

𝑏𝑏1 − 𝑏𝑏3𝜔𝜔2 + 𝑏𝑏5𝜔𝜔4  

6 
𝐾𝐾 = −

𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2 + 𝑎𝑎4𝜔𝜔4 − 𝑎𝑎6𝜔𝜔6

𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2 + 𝑏𝑏4𝜔𝜔4 − 𝑏𝑏6𝜔𝜔6  𝐾𝐾 = −
𝑎𝑎1 − 𝑎𝑎3𝜔𝜔2 + 𝑎𝑎5𝜔𝜔4

𝑏𝑏1 − 𝑏𝑏3𝜔𝜔2 + 𝑏𝑏5𝜔𝜔4  

7 
𝐾𝐾 = −

𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2 + 𝑎𝑎4𝜔𝜔4 − 𝑎𝑎6𝜔𝜔6

𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2 + 𝑏𝑏4𝜔𝜔4 − 𝑏𝑏6𝜔𝜔6  𝐾𝐾 = −
𝑎𝑎1 − 𝑎𝑎3𝜔𝜔2 + 𝑎𝑎5𝜔𝜔4 − 𝑎𝑎7𝜔𝜔6

𝑏𝑏1 − 𝑏𝑏3𝜔𝜔2 + 𝑏𝑏5𝜔𝜔4 − 𝑏𝑏7𝜔𝜔6  

⋮ ⋮ ⋮ 
 

n 𝐾𝐾 = −
∑ (−1)

𝑚𝑚
2 𝑎𝑎𝑚𝑚𝜔𝜔𝑚𝑚𝑛𝑛

𝑚𝑚=0,2,4,

∑ (−1)
𝑚𝑚
2 𝑏𝑏𝑚𝑚𝜔𝜔𝑚𝑚𝑛𝑛

𝑚𝑚=0,2,4,

 𝐾𝐾 = −
∑ (−1)

𝑚𝑚+3
2 𝑎𝑎𝑚𝑚𝜔𝜔𝑚𝑚−1𝑛𝑛

𝑚𝑚=1,3,5,

∑ (−1)
𝑚𝑚+3
2 𝑏𝑏𝑚𝑚𝜔𝜔𝑚𝑚−1𝑛𝑛

𝑚𝑚=1,3,5,

 

3. DERIVATION OF THE PROPOSED METHOD FORMULAS 

3.1 Derivation of the Marginal Gain’s Formula 
For an example a third order system is considered.  The substitution of Equation (6) into Equation (8) gives two algebraic 
equations with two unknowns such as 
 

                                       𝑎𝑎1 + 𝐾𝐾𝑏𝑏1 − (𝑎𝑎3 + 𝐾𝐾𝑏𝑏3)𝜔𝜔2 = 0.                                                            (10) 
𝑎𝑎0 + 𝐾𝐾𝑏𝑏0 − (𝑎𝑎2 + 𝐾𝐾𝑏𝑏2)𝜔𝜔2 = 0.                                                            (11) 

Solve both equations for K to get 

𝐾𝐾 = −
𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2

𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2  . 

(12) 

𝐾𝐾 = −
𝑎𝑎1 − 𝑎𝑎3𝜔𝜔2

𝑏𝑏1 − 𝑏𝑏3𝜔𝜔2  . 

                                                   (13) 
We obtained two formulas for the gain K and the used one is the one with a nonzero dominator. Repeating this procedure for 
higher degree of characteristic equations gives similar results that are shown in Table 3. 

3.2 Derivation of the Intersection Points’ Formula 
Here is a derivation of a formula that is used to construct a polynomial where its roots give the intersection points with the 
imaginary axis of the s-plane. The derivation is accomplished by equating the two expressions of the two formulas for each 
degree in Table 3. The obtained polynomial is a function of independent variable omega as shown in Table 4. Those points 
(omega values) are points on the imaginary axis of the s-plane where the system will be at a marginal stability. Then omega 
values are substituted in the corresponding formula that is given in Table 3 to obtain the marginal gains. 
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Table 4.  Formula of the polynomial of the intersection points for a system of degrees 2,3,⋯ ,𝑛𝑛. 

n Polynomial Formula  
2 (𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2)(𝑏𝑏1) − (𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2)(𝑎𝑎1) = 0 
3 (𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2)(𝑏𝑏1 − 𝑏𝑏3𝜔𝜔2) − (𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2)(𝑎𝑎1 − 𝑎𝑎3𝜔𝜔2) = 0 
4 (𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2 + 𝑎𝑎4𝜔𝜔4)(𝑏𝑏1 − 𝑏𝑏3𝜔𝜔2) − (𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2 + 𝑏𝑏4𝜔𝜔4)(𝑎𝑎1 − 𝑎𝑎3𝜔𝜔2) = 0 
5 (𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2 + 𝑎𝑎4𝜔𝜔4)(𝑏𝑏1 − 𝑏𝑏3𝜔𝜔2 + 𝑏𝑏5𝜔𝜔4) − (𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2 + 𝑏𝑏4𝜔𝜔4)(𝑎𝑎1 − 𝑎𝑎3𝜔𝜔2 + 𝑎𝑎5𝜔𝜔4) = 0 
6 (𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2 + 𝑎𝑎4𝜔𝜔4 − 𝑎𝑎6𝜔𝜔6)(𝑏𝑏1 − 𝑏𝑏3𝜔𝜔2 + 𝑏𝑏5𝜔𝜔4)

− (𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2 + 𝑏𝑏4𝜔𝜔4 − 𝑏𝑏6𝜔𝜔6)(𝑎𝑎1 − 𝑎𝑎3𝜔𝜔2 + 𝑎𝑎5𝜔𝜔4) = 0 
7 (𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2 + 𝑎𝑎4𝜔𝜔4 − 𝑎𝑎6𝜔𝜔6)(𝑏𝑏1 − 𝑏𝑏3𝜔𝜔2 + 𝑏𝑏5𝜔𝜔4 − 𝑏𝑏7𝜔𝜔6)

− (𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2 + 𝑏𝑏4𝜔𝜔4 − 𝑏𝑏6𝜔𝜔6)(𝑎𝑎1 − 𝑎𝑎3𝜔𝜔2 + 𝑎𝑎5𝜔𝜔4 − 𝑎𝑎7𝜔𝜔6) = 0 
⋮ ⋮ 
 
 

n 

 �∑ (−1)
𝑚𝑚
2 𝑎𝑎𝑚𝑚𝜔𝜔𝑚𝑚𝑛𝑛

𝑚𝑚=0,2,4, � �∑ (−1)
𝑚𝑚+3
2 𝑏𝑏𝑚𝑚𝜔𝜔𝑚𝑚−1𝑛𝑛

𝑚𝑚=1,3,5, � + 

                         −�∑ (−1)
𝑚𝑚
2 𝑏𝑏𝑚𝑚𝜔𝜔𝑚𝑚𝑛𝑛

𝑚𝑚=0,2,4, � �∑ (−1)
𝑚𝑚+3
2 𝑎𝑎𝑚𝑚𝜔𝜔𝑚𝑚−1𝑛𝑛

𝑚𝑚=1,3,5, � = 0 

4. COMPARISON OF THE PROPOSED METHOD WITH COMMON METHODS 
The proposed method is compared with the other three common methods. The comparison is done by showing the finding of 
the intersection points with the imaginary axis and the marginal gains in the following three examples. The order of methods 
is: 1) The proposed Marginal Gain-Polynomial of Intersection Points’ formulas, 2) Routh-Hurwitz criterion, 3) Root Locus 
plot using MATLAB, and 4) 𝑠𝑠 = 𝑗𝑗𝑗𝑗 where the s variable in the characteristic equation of the control system has zero real part. 

4.1 Example 1 
In this example a third order system is considered. This system has two crossing points with the imaginary axis of the s-
plane. The transfer function of the system is 
 

𝐺𝐺(𝑠𝑠)𝐻𝐻(𝑠𝑠) = 𝐾𝐾
1

(𝑠𝑠 + 1)(𝑠𝑠 + 3)(𝑠𝑠 + 5)
 . 

                                                        (14) 
The polynomials of the denominator and the numerator are 
 

                     𝐷𝐷(𝑠𝑠) = 𝑠𝑠3 + 9𝑠𝑠2 + 23𝑠𝑠 + 15,       𝑁𝑁(𝑠𝑠) = 1 .                                                     (15) 

4.1.1 Using the Proposed Formulas  
From Table 4 the formula of the polynomial of intersection points for 𝑛𝑛 = 3 is  
 

(𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2)(𝑏𝑏1 − 𝑏𝑏3𝜔𝜔2) − (𝑎𝑎1 − 𝑎𝑎3𝜔𝜔2)(𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2) = 0.                                              (16) 
 
The substitution of the polynomials’ coefficients of the transfer function into Equation (16) gives a polynomial. The roots of 
this polynomial give the intersection points with the imaginary axis. In this example the polynomial and the intersection points 
are        

                          (15 − 9𝜔𝜔2)(0) − (23 − 𝜔𝜔2)(1) = 0  →   𝜔𝜔 = ±√23  →  intersection points  𝑠𝑠 = ±𝑗𝑗√23 .            (17) 
             

Substitution of omega value in the marginal gain formula which is given in Table 3 gives: 
 

𝐾𝐾 = −
𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2

𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2 = −
15 − 9(23)

1
= 192 . 

                                        (18) 

4.1.2 Using Routh-Hurwitz Criterion  
The characteristic equation is: 
 

𝑠𝑠3 + 9𝑠𝑠2 + 23𝑠𝑠 + 15 + 𝐾𝐾 = 0 .                                                               (19) 
 
The Routh array is shown in Figure 2. Based on this criterion the gain for marginal stability is K=192, and the auxiliary equation 
proceeds the row of zeros is 
 

9𝑠𝑠2 + 15 + 𝑘𝑘 = 9𝑠𝑠2 + 15 + 192 = 9𝑠𝑠2 + 207 = 0 .                                           (20) 
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Figure 2. Routh Table of Example 1 

 
Figure 3. Root Locus of Example 1 

 
Then the crossing points with the imaginary axis are 
 

𝑠𝑠2 + 207
9

= 0 → 𝑠𝑠1,2 = √−23 = ±𝑗𝑗√23 .                                                                (21) 

4.1.3 Using Root Locus Technique  
Using MATLAB to plot the root locus. The result is shown in Figure 3. 

4.1.4 The Complex Variable s is an Imaginary Variable  
The value of the complex variable s on the imaginary axis has zero real part, 𝑠𝑠 = 𝑗𝑗𝑗𝑗. Substitution of s in the characteristic 
equation, Equation (19), gives 
 

𝑠𝑠3 + 9𝑠𝑠2 + 23𝑠𝑠 + 15 + 𝐾𝐾 = −𝑗𝑗𝜔𝜔3 − 9𝜔𝜔2 + 𝑗𝑗23𝜔𝜔 + 15 + 𝐾𝐾 = 0 .                               (22) 
 
To satisfy Equation (22) to have just an imaginary number, implies that the real part of the equation is zero. Consequently, the 
imaginary part of the equation is also zero. The result is that we obtain two equations. The two equations in this example are 
 

−9𝜔𝜔2 + 15 + 𝐾𝐾 = 0        𝑎𝑎𝑎𝑎𝑎𝑎      − 𝑗𝑗𝜔𝜔3 + 𝑗𝑗23𝜔𝜔 = 0 .                                                 (23) 
 
Solve the second part for omega and then substitute omega value in the first part to obtain the gain K as 
 

   𝜔𝜔 = ±√23          and   𝐾𝐾 = 9𝜔𝜔2 − 15 = 207 − 15 = 192 .                                        (24) 

4.2 Example 2 
In this example a fifth order system is considered, and to increase its complexity its transfer function has one zero. This system 
has two intersection points with the imaginary axis of the s-plane.  The system’s transfer function is 

                                         

𝐺𝐺(𝑠𝑠)𝐻𝐻(𝑠𝑠) = 𝐾𝐾
𝑠𝑠 + 3

𝑠𝑠(𝑠𝑠 + 5)(𝑠𝑠 + 6)(𝑠𝑠2 + 2𝑠𝑠 + 2) . 

                                                           (25) 
 The polynomials of the denominator and the numerator are 
 

             𝐷𝐷(𝑠𝑠) = 𝑠𝑠5 + 13𝑠𝑠4 + 54𝑠𝑠3 + 82𝑠𝑠2 + 60𝑠𝑠,       𝑁𝑁(𝑠𝑠) = 𝑠𝑠 + 3 .                                  (26) 
 

4.2.1 Using the Proposed Formulas  
Using the polynomial formula given in Table 4 for n = 5 is 
 
                           (𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2 + 𝑎𝑎4𝜔𝜔4)(𝑏𝑏1 − 𝑏𝑏3𝜔𝜔2 + 𝑏𝑏5𝜔𝜔4) , 

−(𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2 + 𝑏𝑏4𝜔𝜔4)(𝑎𝑎1 − 𝑎𝑎3𝜔𝜔2 + 𝑎𝑎5𝜔𝜔4) = 0 .                       (27) 
 
Substitution of the polynomials’ coefficients of the transfer function into Equation (27) gives 
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(−82𝜔𝜔2 + 13𝜔𝜔4)(1) − (3)(60 − 54𝜔𝜔2 + 𝜔𝜔4) = 0 .                                               (28) 
 
After simplification and then solving for omega to get 
 

𝜔𝜔4 + 8𝜔𝜔2 − 18 = 0  → real  𝜔𝜔 = ±1.3531 →    𝑠𝑠 =  ±𝑗𝑗1.3531 .                              (29) 
 
Then substitution of omega in the gain K formula for 𝑛𝑛 = 5 which is given in Table 3 gives the marginal gain as 
 

𝐾𝐾 = −
𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2 + 𝑎𝑎4𝜔𝜔4

𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2 + 𝑏𝑏4𝜔𝜔4 = −
0 − 82𝜔𝜔2 + 13𝜔𝜔4

3 − 0 − 0
=

(82 − 13 × 1.831)1.831
3

= 35.519 . 

             (30) 

4.2.2 Using Routh-Hurwitz Criterion  
The characteristic equation of this example is 
 

𝑠𝑠5 + 13𝑠𝑠4 + 54𝑠𝑠3 + 82𝑠𝑠2 + (60 + 𝐾𝐾)𝑠𝑠 + 3𝐾𝐾 = 0 .                                        (31) 
 
To have a row of zeros the expression in the fifth row that is shown in Figure 4 should be zero, as a result we get 
 

 24,420 − 652𝐾𝐾 − 𝐾𝐾2 = 0 .                                                              (32) 
 
Solve to get the gain K of marginal stability as K=35.5190. Then construction of the auxiliary equation gives 
 

40,700 − 130𝐾𝐾
620

𝑠𝑠2 + 3𝑘𝑘 = 0 →  
40,700 − 130(35.519)

620
𝑠𝑠2 + 3(35.519) = 0 . 

                 (33) 
Then solution of the auxiliary equation gives the intersection points as: 𝑠𝑠 = ±𝑗𝑗1.3531. 
 

4.2.3 Using Root Locus Technique  
Using MATLAB to plot the root locus of this example. The result is shown on the graph of Figure 5. 

4.2.4 The Complex Variable s is an Imaginary Variable  
The characteristic equation on the imaginary axis is obtained by substituting 𝑠𝑠 = 𝑗𝑗𝑗𝑗 into the characteristic equation, Equation 
(31), as 
 

𝑗𝑗𝜔𝜔5 + 13𝜔𝜔4 − 𝑗𝑗54𝜔𝜔3 − 82𝜔𝜔2 + 𝑗𝑗(60 + 𝐾𝐾)𝜔𝜔 + 3𝐾𝐾 = 0 .                                   (34) 
 

 

 
Figure 4. Routh array of Example 2 

 

 
Figure 5. Root Locus of Example 2 
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To satisfy this equation implies that its two parts are zeros, so the result there are two equations such as 
 

13𝜔𝜔4 − 82𝜔𝜔2 + 3𝐾𝐾 = 0,   and   𝑗𝑗𝜔𝜔5 − 𝑗𝑗54𝜔𝜔3 + 𝑗𝑗(60 + 𝐾𝐾)𝜔𝜔 = 0 .                    (35) 
 
Simplification of the second part and rewrite Equation (35) to have the two parts such as 
    

13𝜔𝜔4 − 82𝜔𝜔2 + 3𝐾𝐾 = 0,   and   𝜔𝜔4 − 54𝜔𝜔2 + 60 + 𝐾𝐾 = 0 .                               (36) 
 
Elimination of K from the two parts to get a polynomial of omega. Solving the obtained polynomial for real values of omega 
and then the intersection points, and then the substitution of omega in one of the two parts gives the marginal gain at the 
intersection points such as 
 

𝜔𝜔 = ±1.3531 → Intersection points: 𝑠𝑠 = ±𝑗𝑗1.3531, and the gain is   𝐾𝐾 = 35.519 .  
                               (37) 

4.3 Example 3 
In this example the system’s order is seven.  It has four zeros to increase its complexity significantly. This system plot has 
eight intersection points with the imaginary axis in the s-plane. The transfer function of this system in example is 
 

𝐺𝐺(𝑠𝑠)𝐻𝐻(𝑠𝑠) = 𝐾𝐾
(𝑠𝑠2 + 𝑠𝑠 + 0.25)(𝑠𝑠2 + 2.5𝑠𝑠 + 65.56)
𝑠𝑠3(𝑠𝑠2 + 2.4𝑠𝑠 + 160)(𝑠𝑠2 + 6𝑠𝑠 + 18)

 . 

 (38) 
The polynomials of the denominator and the numerator of the transfer function are: 
 
                                                                  𝐷𝐷(𝑠𝑠) = 𝑠𝑠7 + 30𝑠𝑠6 + 322𝑠𝑠5 + 1392𝑠𝑠4 + 2880𝑠𝑠3 , 

             𝑁𝑁(𝑠𝑠) = 𝑠𝑠4 + 3.5𝑠𝑠3 + 68.31𝑠𝑠2 + 66.19𝑠𝑠 + 16.39 .                                              (39) 
 

4.3.1 Using the Proposed Formulas  
From Table 4 the polynomial formula for 𝑛𝑛 = 7 is 
 

(𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2 + 𝑎𝑎4𝜔𝜔4 − 𝑎𝑎6𝜔𝜔6)(𝑏𝑏1 − 𝑏𝑏3𝜔𝜔2 + 𝑏𝑏5𝜔𝜔4 − 𝑏𝑏7𝜔𝜔6) , 
−(𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2 + 𝑏𝑏4𝜔𝜔4 − 𝑏𝑏6𝜔𝜔6)(𝑎𝑎1 − 𝑎𝑎3𝜔𝜔2 + 𝑎𝑎5𝜔𝜔4 − 𝑎𝑎7𝜔𝜔6) = 0 .         (40) 

 
Substitute the polynomials’ coefficients of the transfer function into Equation (40) to obtain 
 
                          (1392𝜔𝜔4 − 30𝜔𝜔6)(66.19 − 3.5𝜔𝜔2) , 

−(16.39 − 68.31𝜔𝜔2 + 𝜔𝜔4)(−2880𝜔𝜔2 + 322𝜔𝜔4 − 𝜔𝜔6) = 0 .              (41) 
 
Simplify to get 

  𝜔𝜔2(𝜔𝜔8 − 285.31𝜔𝜔6 + 18,034.51𝜔𝜔4 − 109,873.9𝜔𝜔2 + 47,203.2) = 0 .              (42) 
 
The roots omegas of Equation (42) are 
 

𝜔𝜔 = ±0, ±0.6818, ±2.5076 , ±9.0713, ±14.0096 .                                          (43) 
 
Then the intersection points are 
 

𝑠𝑠1,2 = ±𝑗𝑗0.6818, 𝑠𝑠3,4 = ±𝑗𝑗2.5076, 𝑠𝑠5,6 = ±𝑗𝑗9.0713 , 𝑠𝑠7,8 = ±𝑗𝑗14.0096 .                            (44) 
 
The corresponding gains are calculated using the formula given in Table 3 for 𝑛𝑛 = 7. 
 

𝐾𝐾 = −
𝑎𝑎0 − 𝑎𝑎2𝜔𝜔2 + 𝑎𝑎4𝜔𝜔4 − 𝑎𝑎6𝜔𝜔6

𝑏𝑏0 − 𝑏𝑏2𝜔𝜔2 + 𝑏𝑏4𝜔𝜔4 − 𝑏𝑏6𝜔𝜔6 = −
1392𝜔𝜔4 − 30𝜔𝜔6

16.39 − 68.31𝜔𝜔2 + 𝜔𝜔4 =
𝜔𝜔4(30𝜔𝜔2 − 1392)

𝜔𝜔4 − 68.31𝜔𝜔2 + 16.39
 . 

                       (45) 
Substitute the omegas to get the corresponding marginal gains as 
 

    𝐾𝐾1 = 19.66,       𝐾𝐾2 = 127.35 ,   𝐾𝐾3 =  6,249, 𝐾𝐾4 = 6,891.8                                              (46) 

4.3.2 Using Routh-Hurwitz Criterion  
The characteristic equation of this example is: 
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Figure 6. Routh array of Example 3 

 
 

𝑠𝑠7 + 30𝑠𝑠6 + 322𝑠𝑠5 + (𝐾𝐾 + 1392)𝑠𝑠4 + (3.5𝐾𝐾 + 2880)𝑠𝑠3 +. 
68.31𝐾𝐾𝑠𝑠2 + 66.19𝐾𝐾𝐾𝐾 + 16.39𝐾𝐾 = 0 .                     (47) 

 
Based on the characteristic equation of this example, Equation (47) the Routh array is shown in Figure 6, where the elements 
of the array are 
 

𝑏𝑏1 = −
1

30
� 1              322
30    𝐾𝐾 + 1392� =

8268 − 𝐾𝐾
30

 
,   

𝑏𝑏3 = −
1

30
�1     3.5𝐾𝐾 + 2880
30            68.31 𝐾𝐾� =

86,400 + 36.69𝐾𝐾
30

 , 
  

𝑏𝑏5 = −
1

30
� 1             66.19K
30              16.39K� = 65.643𝐾𝐾 . 

                                                                     (48)        
The consecutive expressions of the elements become more and more complicated and as an example 
 

𝑐𝑐1 =
−𝐾𝐾2 + 5,775.3𝐾𝐾 + 8,917,056)

𝐾𝐾 − 8,268
,        𝑐𝑐3 =

𝐾𝐾(68.31𝐾𝐾 − 505,707.78)
𝐾𝐾 − 8,268

 . 

                        (49) 
It is very hard to obtain the later elements’ expressions. As a result, the Routh-Hurwitz criterion is not a useful method for a 
high degree of transfer function. 

4.3.3 Using Root Locus Technique  
Using MATLAB to plot the root locus of Example 3 is shown Figures 7 and 8. 

4.3.4 The Complex Variable s is an Imaginary Variable  
Substitution into the characteristic equation, Equation (47), 𝑠𝑠 = 𝑗𝑗𝑗𝑗 to get 
 

(𝑗𝑗𝑗𝑗)7 − 30(𝑗𝑗𝑗𝑗)6 + 322(𝑗𝑗𝑗𝑗)5 + (1392 + 𝐾𝐾)(𝑗𝑗𝑗𝑗)4 + (2880 + 3.5𝐾𝐾)(𝑗𝑗𝑗𝑗)3 + , 
+68.31𝐾𝐾(𝑗𝑗𝑗𝑗)2 + 66.19𝐾𝐾(𝑗𝑗𝑗𝑗) + 16.39𝐾𝐾 = 0 .                      (50)  

Or 
𝑗𝑗[−𝜔𝜔7 + 322𝜔𝜔5 − (2880 + 3.5𝐾𝐾)𝜔𝜔3 + 66.19𝐾𝐾𝐾𝐾] + , 

+[−30𝜔𝜔6 + 1392𝜔𝜔4 + 𝐾𝐾(𝜔𝜔4 − 68.31𝜔𝜔2 + 16.39)] = 0 .                     (51) 
 
If the first part is zero, then solve for K to have 
 

𝐾𝐾 =
−𝜔𝜔6 + 322𝜔𝜔4 − 2,880𝜔𝜔2

3.5𝜔𝜔2 − 66.19
 . 

                                                              (52) 
Substitution into the second term to get 
 

−30𝜔𝜔6 + 1392𝜔𝜔4 +
−𝜔𝜔6 + 322𝜔𝜔4 − 2,880𝜔𝜔2

3.5𝜔𝜔2 − 66.19
(𝜔𝜔4 − 68.31𝜔𝜔2 + 16.39) = 0 . 

             (53) 
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Figure 7. Root Locus plot of Example 3 

 

 
Figure 8. Root Locus of Example 3 showing the values at 

the intersection points with the imaginary axis 
 
Or      
                       (3.5𝜔𝜔2 − 66.19)(−30𝜔𝜔6 + 1392𝜔𝜔4) + , 

+(−𝜔𝜔6 + 322𝜔𝜔4 − 2,880𝜔𝜔2)(𝜔𝜔4 − 68.31𝜔𝜔2 + 16.39) = 0 .           (54) 
 

The result of the multiplication and then of the simplification is 
 

𝜔𝜔2(−𝜔𝜔8 + 285.31𝜔𝜔6 − 18,034.51𝜔𝜔4 + 109,873.9𝜔𝜔2 − 47,203.2) = 0 .           (55) 
 

The omega values and the intersection points are 
 

𝜔𝜔 = ±0, ±0.6818, ±2.5076 , ±9.0713, ±14.0096 . 
𝑠𝑠1,2 = ±𝑗𝑗0.6816, 𝑠𝑠3,4 = ±𝑗𝑗2.5084,   𝑠𝑠5,6 = ±𝑗𝑗9.0691,   𝑠𝑠7,8 = ±𝑗𝑗14.0105 . 

                      (56) 
Substitution into Equation (52) to get the marginal gains as 
 

𝐾𝐾1 = 19.66,       𝐾𝐾2 = 127.35 ,   𝐾𝐾3 =  6,249, 𝐾𝐾4 = 6,891.8                            (57) 

5. DISCUSSION AND CONCLUSION 
In principle the most commonly used methods by engineers and in classrooms for finding the intersection points with the 
imaginary axis and the corresponding gains are Routh Horwitz criterion as a theoretical method, and root locus plots as a semi 
graphical method. A less common one method is that at the intersection points the s variable has zero real part, and it becomes 
as s=jω. The new proposed method is to use the derived marginal gain-polynomial of intersection points ready formulas. Then 
the developed formulas are used to calculate the intersection points and then the corresponding gains.  

The comparison is showing the various steps to reach the marginal gain for three examples using the four methods. In the 
three examples the transfer functions are different in degree and in complexity. The first example is a third order system which 
has three real pols and no zeros. The second example is a fifth order system which has three real pols, conjugate complex pair 
pols, and one finite real zero. While the third example is a seventh order system which has three pols at the origin, two conjugate 
complex pairs of pols, and two conjugate complex pairs of finite zeros. 

In the proposed method a polynomial whose roots are the intersection points with the imaginary axis are obtained by using 
a ready formula. A value substitution of the coefficients of the denominator polynomial, and the coefficients of the numerator's 
polynomial of the system transfer function into the formula. The polynomial’s roots are substituted into the derived ready gain 
formula which is given in Table 3 to obtain the corresponding gains K. 

The required steps, the amount, and the number of steps of the mathematical operations that are required to reach the final 
solution for each example are shown in the solution of the three examples. The solution of the three examples using the four 
methods showed that: 
1. For a higher order system, the Routh-Hurwitz criterion is not practical as shown in Example 3. The reason is that the 

degree of the polynomial of the characteristic equation of a higher order system is high. This makes the calculation of the 
elements of the Routh array very difficult, and the elements' algebraic expressions are complicated. As a result the Routh-
Hurwitz criterion for higher order systems is inapplicable. 

2. Using MATLAB to plot the root locus of the control system shows results very close to the actual results, because it is a 
semi-graphical method, and it increases its inaccuracy when the intersecting points are very close to each other.  

3. In the method which is based on the fact that the variable s on the imaginary axis of the s-plane has only an imaginary part 
such as s=jω, There a substitution of jω in the characteristic equation of the control system. The result is an equation 
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which has a real part and an imaginary part. Those two parts are set to zeros. As a result, we have two equations to be 
solved to obtain the final polynomial. The roots of the final polynomial are the intersection points. Each value of the 
intersection points is substituted into one of the equations to be solved to obtain the corresponding gains. The results of 
this method are the same as the proposed method, but it requires more mathematical steps to reach the results. In addition, 
in the proposed method the polynomial formula is ready for use while in this method all the solution steps must be done 
by the user.  

4. The proposed method starts from the available transfer function of the control system. Then there is a substitution of the 
numerical values of the coefficients of the two polynomials, denominator, and the numerator, of the transfer function into 
the polynomial formula given in Table 4. The substitution gives a polynomial.  The roots of this polynomial are substituted 
in the gain formula which is given in Table 3 to get the marginal gains. This method is accurate, systematic, and it is more 
efficient than other methods especially for a system of higher order. 

5. The result of the proposed method is the same as the results of the other methods. This proves that the proposed method 
is correct, and accurate. And the solution process is systematic and efficient. 

6. The proposed method is applicable for any system order of n, and it may be programmed and be used to enhance the 
root locus graph.  

It helps in controller tuning if Ziegler and Nichols ultimate cycle criteria is used. 
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APPENDIX 
Mathematical Proof of the Basis of the Proposed Method 
In the proposed method a formula is used to construct a polynomial that its roots are the points of the intersection with the 
imaginary axis where the system has marginal stability. The formula is based on substitution of the coefficients of the two 
polynomials, denominator, and numerator, of the system transfer function. 

From a long division of polynomial, we may write the following equation: 
 
           (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝑃𝑃) =, 

                  = (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)(Quotient, Q) + (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 1,𝑅𝑅1) + (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 2,𝑅𝑅2)𝑠𝑠.   (A1) 
Proof by induction 
Starting with n=3 to examine if Equation (A1) is true. To do that the right side of the equation is compared with the left side 
of the equation. After substitution of the algebraic expressions for each factor of the right side of Equation (A1) that are in 
Table 1 and Table 2 to give   

(𝑠𝑠2 + 𝜔𝜔2)(𝑐𝑐3𝑠𝑠 + 𝑐𝑐2) + (𝑐𝑐𝑜𝑜 − 𝑐𝑐2𝜔𝜔2) + (𝑐𝑐1 − 𝑐𝑐3𝜔𝜔2)𝑠𝑠.                                      (A2) 
 

Multiplication and summing of equal terms in Equation (A2) gives 
 

𝑐𝑐3𝑠𝑠3 + 𝑐𝑐2𝑠𝑠2 + 𝑐𝑐3𝜔𝜔2𝑠𝑠 + 𝑐𝑐2𝜔𝜔2 + 𝑐𝑐𝑜𝑜 − 𝑐𝑐2𝜔𝜔2 + 𝑐𝑐1𝑠𝑠 − 𝑐𝑐3𝜔𝜔2𝑠𝑠 = 𝑐𝑐3𝑠𝑠3 + 𝑐𝑐2𝑠𝑠2 + 𝑐𝑐1𝑠𝑠.                   (A3) 
 

The result as shown in the right side of Equation (A3) is the characteristic polynomial for 𝑛𝑛 = 3, which means that Equation 
(A1) is true for this order. Since the remainders are being changed every two successive degrees, as shown in Table 2. It is 
wise to do the same also for 𝑛𝑛 = 4 to have 
 

(𝑠𝑠2 + 𝜔𝜔2)(𝑐𝑐4𝑠𝑠2 + 𝑐𝑐3𝑠𝑠 + 𝑐𝑐2−𝑐𝑐4𝜔𝜔2) + (𝑐𝑐𝑜𝑜 − 𝑐𝑐2𝜔𝜔2 + 𝑐𝑐4𝜔𝜔4) + (𝑐𝑐1 − 𝑐𝑐3𝜔𝜔2)𝑠𝑠.                     (A4) 
 

Multiplication and summing of equal terms in Equation (A4) give 
 
  𝑐𝑐4𝑠𝑠4 + 𝑐𝑐3𝑠𝑠3 + 𝑐𝑐2𝑠𝑠2−𝑐𝑐4𝜔𝜔2𝑠𝑠2 + 𝑐𝑐4𝜔𝜔2𝑠𝑠2 + 𝑐𝑐3𝜔𝜔2𝑠𝑠 + 𝑐𝑐2𝜔𝜔2−𝑐𝑐4𝜔𝜔4 + 𝑐𝑐𝑜𝑜 − 𝑐𝑐2𝜔𝜔2 + 𝑐𝑐4𝜔𝜔4, 

+𝑐𝑐1𝑠𝑠 − 𝑐𝑐3𝜔𝜔2𝑠𝑠 = 𝑐𝑐4𝑠𝑠4 + 𝑐𝑐3𝑠𝑠3 + 𝑐𝑐2𝑠𝑠2 + 𝑐𝑐1𝑠𝑠.                          (A5) 
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The result is as shown in the right side of Equation (A5) is the characteristic polynomial for 𝑛𝑛 = 4, which means that 
Equation (A1) is true for this order. 

Assume that Equation (A1) is true for order 𝑛𝑛 which means that 
 
       ∑ 𝐶𝐶𝑖𝑖𝑛𝑛

𝑖𝑖=0,1,2,⋯ 𝑠𝑠𝑖𝑖 = (𝑠𝑠2 + 𝜔𝜔2) �∑ 𝐶𝐶𝑖𝑖𝑛𝑛
𝑖𝑖=2,3,⋯ ∑ (−1)

𝑚𝑚
2+1𝑖𝑖

𝑚𝑚=2,4,⋯ 𝑠𝑠𝑖𝑖−𝑚𝑚𝜔𝜔𝑚𝑚−2� +, 

                        + �∑ (−1)
𝑚𝑚
2 𝑐𝑐𝑚𝑚𝜔𝜔𝑚𝑚𝑛𝑛

𝑚𝑚=0,2,4, � + �∑ (−1)
𝑚𝑚+3
2 𝑐𝑐𝑚𝑚𝜔𝜔𝑚𝑚−1𝑛𝑛

𝑚𝑚=1,3,5, � 𝑠𝑠.                       (A6) 
 

Now we must prove that it is also true for 𝑛𝑛 + 1  order which means mathematically that 
 
       ∑ 𝐶𝐶𝑖𝑖𝑛𝑛+1

𝑖𝑖=0,1,2,⋯ 𝑠𝑠𝑖𝑖 = (𝑠𝑠2 + 𝜔𝜔2) �∑ 𝐶𝐶𝑖𝑖𝑛𝑛+1
𝑖𝑖=2,3,⋯ ∑ (−1)

𝑚𝑚
2+1𝑖𝑖

𝑚𝑚=2,4,⋯ 𝑠𝑠𝑖𝑖−𝑚𝑚𝜔𝜔𝑚𝑚−2� +, 

                          + �∑ (−1)
𝑚𝑚
2 𝑐𝑐𝑚𝑚𝜔𝜔𝑚𝑚𝑛𝑛+1

𝑚𝑚=0,2,4, � + �∑ (−1)
𝑚𝑚+3
2 𝑐𝑐𝑚𝑚𝜔𝜔𝑚𝑚−1𝑛𝑛+1

𝑚𝑚=1,3,5, � 𝑠𝑠.                      (A7) 
 

Rewrite Equation (A1) explicitly for degree n to have 
 

∑ 𝐶𝐶𝑖𝑖𝑛𝑛
𝑖𝑖=0,1,2,⋯ 𝑠𝑠𝑖𝑖 = (𝑠𝑠2 + 𝜔𝜔2)𝑄𝑄𝑛𝑛 + 𝑅𝑅1,𝑛𝑛 + 𝑅𝑅2,𝑛𝑛𝑠𝑠.                                               (A8)   

And for degree 𝑛𝑛 + 1   to have           
       ∑ 𝐶𝐶𝑖𝑖𝑛𝑛+1

𝑖𝑖=0,1,2,⋯ 𝑠𝑠𝑖𝑖 = (𝑠𝑠2 + 𝜔𝜔2)𝑄𝑄𝑛𝑛+1 + 𝑅𝑅1,𝑛𝑛+1 + 𝑅𝑅2,𝑛𝑛+1𝑠𝑠.                                    (A9)     
From Tables 1 & 2 we have  

              𝑄𝑄𝑛𝑛+1 = 𝑄𝑄𝑛𝑛 + 𝐶𝐶𝑛𝑛+1 ∑ (−1)
𝑚𝑚
2+1𝑛𝑛+1

𝑚𝑚=2,4,⋯ 𝑠𝑠𝑛𝑛+1−𝑚𝑚𝜔𝜔𝑚𝑚−2                                   (A10) 

                                     𝑅𝑅1,𝑛𝑛+1 = 𝑅𝑅1,𝑛𝑛    for even 𝑛𝑛 , 

𝑅𝑅1,𝑛𝑛+1 = 𝑅𝑅1,𝑛𝑛 + (−1)
𝑛𝑛+1
2 𝑐𝑐𝑛𝑛+1𝜔𝜔𝑛𝑛+1     for odd 𝑛𝑛.                                (A11) 

 
                                      𝑅𝑅2,𝑛𝑛+1 = 𝑅𝑅2,𝑛𝑛 + (−1)

𝑛𝑛+4
2 𝑐𝑐𝑛𝑛+1𝜔𝜔𝑛𝑛      for even 𝑛𝑛 , 

𝑅𝑅2,𝑛𝑛+1 = 𝑅𝑅2,𝑛𝑛           for odd 𝑛𝑛.                                                            (A12) 
 
Substitution of Equations (A11) & (A12) into Equation (A9) for even n gives 
 
       ∑ 𝐶𝐶𝑖𝑖𝑛𝑛+1

𝑖𝑖=0,1,2,⋯ 𝑠𝑠𝑖𝑖 = (𝑠𝑠2 + 𝜔𝜔2) �𝑄𝑄𝑛𝑛 + 𝐶𝐶𝑛𝑛+1 ∑ (−1)
𝑚𝑚
2+1𝑛𝑛+1

𝑚𝑚=2,4,⋯ 𝑠𝑠𝑛𝑛+1−𝑚𝑚𝜔𝜔𝑚𝑚−2� +,                              

+𝑅𝑅1,𝑛𝑛 + �𝑅𝑅2,𝑛𝑛 + (−1)
𝑛𝑛+4
2 𝑐𝑐𝑛𝑛+1𝜔𝜔𝑛𝑛� 𝑠𝑠.                        (A13)    

The last term in the summation in the left side is taken out of the summation and in the right side of the equation the square 
brackets are opened, and the terms are reordered to have 
 
       �∑ 𝐶𝐶𝑖𝑖𝑛𝑛

𝑖𝑖=0,1,2,⋯ 𝑠𝑠𝑖𝑖� + 𝐶𝐶𝑛𝑛+1𝑠𝑠𝑛𝑛+1 = (𝑠𝑠2 + 𝜔𝜔2)𝑄𝑄𝑛𝑛 + 𝑅𝑅1,𝑛𝑛 + 𝑅𝑅2,𝑛𝑛𝑠𝑠 + (−1)
𝑛𝑛+4
2 𝑐𝑐𝑛𝑛+1𝜔𝜔𝑛𝑛𝑠𝑠 +, 

      +(𝑠𝑠2 + 𝜔𝜔2) �𝐶𝐶𝑛𝑛+1 ∑ (−1)
𝑚𝑚
2+1𝑛𝑛+1

𝑚𝑚=2,4,⋯ 𝑠𝑠𝑛𝑛+1−𝑚𝑚𝜔𝜔𝑚𝑚−2�.                    (A14) 
              

The right side of Equation (A14) can be expanded as in Equation (A8). So that the first three terms in the right side of Equation 
(A14) are equal to the first term of the left side of the same equation. So, if those terms are removed from both sides of Equation 
(A14) we obtain 
 

 𝐶𝐶𝑛𝑛+1𝑠𝑠𝑛𝑛+1 = (𝑠𝑠2 + 𝜔𝜔2) �𝐶𝐶𝑛𝑛+1 ∑ (−1)
𝑚𝑚
2+1𝑛𝑛+1

𝑚𝑚=2,4,⋯ 𝑠𝑠𝑛𝑛+1−𝑚𝑚𝜔𝜔𝑚𝑚−2� + (−1)
𝑛𝑛+4
2 𝑐𝑐𝑛𝑛+1𝜔𝜔𝑛𝑛𝑠𝑠.               (A15) 

 
For even n the final value of the subscript m in the summation is equal to n. In this case the summation term in the right side 
of Equation (A15) is simplified to be 
 

        𝐶𝐶𝑛𝑛+1 ∑ (−1)
𝑚𝑚
2+1𝑛𝑛

𝑚𝑚=2,4,⋯ 𝑠𝑠𝑛𝑛+1−𝑚𝑚𝜔𝜔𝑚𝑚−2 = 𝐶𝐶𝑛𝑛+1(𝑠𝑠𝑛𝑛−1 − 𝑠𝑠𝑛𝑛−3𝜔𝜔2 + +𝑠𝑠𝑛𝑛−5𝜔𝜔4−,⋯ , +𝑠𝑠3𝜔𝜔𝑛𝑛−4 − 𝑠𝑠𝜔𝜔𝑛𝑛−2).    (A16) 
 
Then the multiplication by the factor (𝑠𝑠2 + 𝜔𝜔2) gives 
 
           𝐶𝐶𝑛𝑛+1[(𝑠𝑠𝑛𝑛+1 − 𝑠𝑠𝑛𝑛−1𝜔𝜔2 + 𝑠𝑠𝑛𝑛−3𝜔𝜔4−,⋯ , +𝑠𝑠5𝜔𝜔𝑛𝑛−4−𝑠𝑠3𝜔𝜔𝑛𝑛−2), 

+(𝑠𝑠𝑛𝑛−1𝜔𝜔2 − 𝑠𝑠𝑛𝑛−3𝜔𝜔4 + 𝑠𝑠𝑛𝑛−5𝜔𝜔6−,⋯ , +𝑠𝑠3𝜔𝜔𝑛𝑛−2 − 𝑠𝑠𝜔𝜔𝑛𝑛)] = 𝐶𝐶𝑛𝑛+1(𝑠𝑠𝑛𝑛+1 − 𝑠𝑠𝜔𝜔𝑛𝑛)                (A17) 
 

The substitution of the result in Equation (A17) into Equation (A15) gives 
 

𝐶𝐶𝑛𝑛+1𝑠𝑠𝑛𝑛+1 = 𝐶𝐶𝑛𝑛+1(𝑠𝑠𝑛𝑛+1 − 𝑠𝑠𝜔𝜔𝑛𝑛) + 𝑐𝑐𝑛𝑛+1𝜔𝜔𝑛𝑛𝑠𝑠                                         (A18) 
Open parentheses to get 
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𝐶𝐶𝑛𝑛+1𝑠𝑠𝑛𝑛+1 = 𝐶𝐶𝑛𝑛+1𝑠𝑠𝑛𝑛+1                                                                           (A19) 
So, it is true for even n. 

For odd 𝑛𝑛 we have 
 
      ∑ 𝐶𝐶𝑖𝑖𝑛𝑛+1

𝑖𝑖=0,1,2,⋯ 𝑠𝑠𝑖𝑖 = (𝑠𝑠2 + 𝜔𝜔2) �𝑄𝑄𝑛𝑛 + 𝐶𝐶𝑛𝑛+1 ∑ (−1)
𝑚𝑚
2+1𝑛𝑛+1

𝑚𝑚=2,4,⋯ 𝑠𝑠𝑛𝑛+1−𝑚𝑚𝜔𝜔𝑚𝑚−2� +, 

+ �𝑅𝑅1,𝑛𝑛 + (−1)
𝑛𝑛+1
2 𝑐𝑐𝑛𝑛+1𝜔𝜔𝑛𝑛+1� + 𝑅𝑅2,𝑛𝑛𝑠𝑠.                              (A20)    

  
Repeating the same steps as for even n as follows: 
Taking out the last term of the summation in the left side of Equation (A20) and open the square brackets in the right side of 
the equation and reordering the terms to get 
 
                �∑ 𝐶𝐶𝑖𝑖𝑛𝑛

𝑖𝑖=0,1,2,⋯ 𝑠𝑠𝑖𝑖� + 𝐶𝐶𝑛𝑛+1𝑠𝑠𝑛𝑛+1 = (𝑠𝑠2 + 𝜔𝜔2)𝑄𝑄𝑛𝑛 + 𝑅𝑅1,𝑛𝑛 + 𝑅𝑅2,𝑛𝑛𝑠𝑠 +, 

      (𝑠𝑠2 + 𝜔𝜔2) �𝐶𝐶𝑛𝑛+1 ∑ (−1)
𝑚𝑚
2+1𝑛𝑛+1

𝑚𝑚=2,4,⋯ 𝑠𝑠𝑛𝑛+1−𝑚𝑚𝜔𝜔𝑚𝑚−2� + �(−1)
𝑛𝑛+1
2 𝑐𝑐𝑛𝑛+1𝜔𝜔𝑛𝑛+1�.             (A21) 

 
For an odd 𝑛𝑛 then 𝑛𝑛 + 1 becomes even, and after removing the terms of Equation (A8) from both sides of Equation 

(A21) we get 
 

 𝐶𝐶𝑛𝑛+1𝑠𝑠𝑛𝑛+1 = (𝑠𝑠2 + 𝜔𝜔2) �𝐶𝐶𝑛𝑛+1 ∑ (−1)
𝑚𝑚
2+1𝑛𝑛+1

𝑚𝑚=2,4,⋯ 𝑠𝑠𝑛𝑛+1−𝑚𝑚𝜔𝜔𝑚𝑚−2� + (−1)
𝑛𝑛+1
2 𝑐𝑐𝑛𝑛+1𝜔𝜔𝑛𝑛+1.               (A22) 

 
The summation in Equation (A22) is 
 

(𝑠𝑠𝑛𝑛−1 − 𝑠𝑠𝑛𝑛−3𝜔𝜔2 + 𝑠𝑠𝑛𝑛−5𝜔𝜔4−,⋯ ,−𝑠𝑠4𝜔𝜔𝑛𝑛−5+𝑠𝑠2𝜔𝜔𝑛𝑛−3 − 𝜔𝜔𝑛𝑛−1)                          (A23) 
 

Then the multiplication by square s and then by square omega gives 
 
        𝐶𝐶𝑛𝑛+1[(𝑠𝑠𝑛𝑛+1 − 𝑠𝑠𝑛𝑛−1𝜔𝜔2 + 𝑠𝑠𝑛𝑛−3𝜔𝜔4−,⋯ ,−𝑠𝑠6𝜔𝜔𝑛𝑛−5+𝑠𝑠4𝜔𝜔𝑛𝑛−3−𝑠𝑠2𝜔𝜔𝑛𝑛−1), 
 

                  (𝑠𝑠𝑛𝑛−1𝜔𝜔2 − 𝑠𝑠𝑛𝑛−3𝜔𝜔4 + 𝑠𝑠𝑛𝑛−5𝜔𝜔6−,⋯ ,−𝑠𝑠4𝜔𝜔𝑛𝑛−3+𝑠𝑠2𝜔𝜔𝑛𝑛−1 − 𝜔𝜔𝑛𝑛+1)] = 𝐶𝐶𝑛𝑛+1(𝑠𝑠𝑛𝑛+1 − 𝜔𝜔𝑛𝑛+1).              (A24) 
 
Substitute the result of Equation (A24) into Equation (A22) to have 
 

𝐶𝐶𝑛𝑛+1𝑠𝑠𝑛𝑛+1 = 𝐶𝐶𝑛𝑛+1(𝑠𝑠𝑛𝑛+1 − 𝜔𝜔𝑛𝑛+1) + 𝐶𝐶𝑛𝑛+1𝜔𝜔𝑛𝑛+1                                              (A25) 
Or 

𝐶𝐶𝑛𝑛+1𝑠𝑠𝑛𝑛+1 = 𝐶𝐶𝑛𝑛+1𝑠𝑠𝑛𝑛+1                                                                                    (A26) 
 

Okay, so it is true for 𝑛𝑛 + 1. 
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