

63:3 (2013) 65–76 | www.jurnalteknologi.utm.my | eISSN 2180–3722 | ISSN 0127–9696

Full paper
Jurnal

Teknologi

Relaxing Synchronization Constraints in Distributed Agent-based
Simulations

Omar Rihawia*, Yann Secqa, Philippe Mathieua

aLIFL (CNRS UMR 8022), Université Lille1, 59650 Villeneuve d’Ascq, France

*Corresponding author: omar.rihawi@lifl.fr

Article history

Received :11 September 2012

Received in revised form :
21 February 2013

Accepted :15 April 2013

Graphical abstract

Abstract

In the context of situated agents simulations, when the number of agents increases, the number of their

interactions will be increased too. These growths leads to higher requirements in memory and computation
power. When simulations involve millions of agents, it becomes necessary to distribute the simulator on a

computer network. In this paper we study the impact of synchronization policies in such context. Our claim

is that when millions of agents are used in a simulation, because observations of these complex systems is
made at the population level, emergent properties at the macroscopic level should not be highly impacted

if some failure appears at the microscopic level. This paper is focused on the study of the impact of

synchronization relaxation in the context of large scale situated agents simulations. We evaluate the cost in
performance of several synchronization policies and their impact on the macroscopic properties of

simulations. To that aims, we study three different time management mechanisms and evaluate them on

two multi-agent applications.

Keywords: Distributed multi-agent systems; distribute situated agent-based simulations; distributed

architectures; synchronization policies; time management

© 2013 Penerbit UTM Press. All rights reserved.

1.0 INTRODUCTION

Multi-agent systems are made of autonomous entities (agents),

which interact in an environment to achieve their own goals [1],

producing emergent properties at the macroscopic level. When the

number of agents or interactions grows to millions or billions, the

simulation of such system requires important computation power

and memory volume, which can be handled by distributing

simulations over network. However, when working with this kind

of simulations, the goal is not to observe millions of individual

interactions (microscopic level), but to observe properties at

macroscopic level. In some applications, we can even consider that

some agents fail or cannot interact as fast as other agents, that

should not be critical to the global simulation outcome. In other

words, if we have a large scale situated multi-agent system, and

some agents fail to interact, that should not affect the global

behaviour of the system (macroscopic level).
 To reach large scalability in such systems, the distributed

computation over a computer network is required. That raise some

problematics like: time management and synchronization. This

paper presents a first study of synchronization costs in

performances and the impact of synchronization policies on the

preservation of emergent macroscopic properties of situated multi-

agent simulation.

The next section details the notion of time in a centralized and

decentralized setting and introduce the three main synchronization

policies that we have chosen for this study. The third section

introduces the main concepts of multi-agent system. The fourth

section details the platform that we have developed to experiment

synchronization issues. The fifth section is the experimentation

made on a prey-predator and capture the flag applications to

benchmark the impact of synchronization policies on simulation

outcomes. Last section is the conclusion.

2.0 NOTIONS OF TIME AND SYNCHRONIZATION

The word time is often defined as a non-spatial continuum in which

events occur in apparently irreversible succession from the past

through the present to the future. This transition from past events

to events happening in the present is called the flow of time [2].

2.1 The Multiple Notion of Time and Time Steps

In a distributed simulation context, several notions of time are

involved: user time, which is the real time, and simulated time,

which is a set of small durations used to produce evolutions within

66 Omar Rihawi et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 65–76

a simulation. This notion of simulated time is less linked to the flow

of time and irreversibility than the property of ordering events in a

sequence to guaranty causality between events. This notion of

simulated time has been defined in a distributed context by

Lamport [3] through a logical clock that induce a partial ordering

of events, and has been refined as Logical Virtual Time (LVT) by

Jefferson [4].

 In multi-agent simulations, a common implementation to

enable the simulation dynamic is to query all agents for their

current action and to apply this set of actions. This round of talk

defines a simulation step (simulation tick) or Time Step (TS).

Because several actions are gathered within a time step, one can

encounter conflicts between two or more actions, thus the simulator

has to define tie-break rules for such situations. As illustrated in the

prey-predator applications later in this paper, if two predators try to

attack the same prey in the same simulation tick, a rule has to be

given to define the outcome of such conflicting interaction.

 In centralized multi-agent simulations, there is only one

simulation time step that organize agents evaluation and that allows

them to interact in a given period. In a distributed simulation, there

is one logical clock per machine and the user time needed to handle

a simulation step is not the same. In order to guaranty causality on

all machines, we have to synchronize local time step within all

machines. However, several policies to handle time step

synchronization can be proposed as we will see in next sections.

 The question that we are interested in is whether

synchronization constraints can be relaxed without impacting the

simulation outcome. Indeed, the balance between communication

costs, performances and reliability is dependent on the application

that is implemented. For example, if a simulation is used to

generate an animation with a huge agent number, it should not be

so important if some agents fail to interact, or if they do not interact

as fast as other agents. However, in some other applications, like

urban traffic simulations, we need reproducibility and reliability to

ensure that all interactions between agents are fulfilled and also that

performances are able to catch up with faster than real-time

resolution.

2.2 Synchronization Policies

In this section, we explore three synchronization policies for

distributed multi-agent simulations: strong synchronization,

flexible synchronization and no synchronization. The main

problem in a distributed setting is time management between

machines [5] [6]. There are mainly two synchronization approaches

in distributed systems: conservative (or synchronous) and

optimistic (or asynchronous) synchronization [7], [8], [9].

However, we propose to divide synchronization policies into three

main approaches: strong synchronization, flexible synchronization

and no synchronization.

2.2.1 Strong Synchronization

This policy is simple: all machines are synchronized together in

such a way that all local clocks are running at the same pace. Thus,

the distributed simulator guaranty that all agents execute the same

number of actions. To implement a strong synchronization, more

messages have to be exchanged between machines, so

communications costs are increased. This kind of conservative

approach strictly avoid causality errors, but can introduce

communication delays or deadlock problems.

2.2.2 Flexible Synchronization

The second policy allows machines to progress at different pace.

One way to implement such flexibility is to use an optimistic (or

asynchronous) synchronization, which allows machines to advance

at different pace in simulated time. The main issue is to handle

causality errors by detecting and recovering them through a

rollback mechanism [9]. A rollback mechanism enforces temporal

consistency by allowing a simulator to roll back previous events to

reconstruct a previous state of the simulation. To enable this

property, a simulator has to maintain a list of anti-messages that can

undo side effects that have been produced by events evaluation.

The gain of optimistic approaches is based on the fact that

simulators should not roll back too often.

 Another flexible synchronization that can be proposed is time

window synchronization. With this approach, machines can

progress at different pace but a global constraint is enforced such

that the slowest and fastest machines do not have a time shift

greater than the defined time window. Thus, a time window defines

the worst spread in time steps that can happen between the slowest

and fastest machine. With this window permission, machines can

avoid some delays of strong synchronization but we have to check

that this flexibility do not affect macroscopic behaviours outcome.

Of course, with this approach, we can have situations where agents

in different time steps can interact. These situations can be resolved

through roll back mechanisms, or can be ignored if it is believed

that the impact of time incoherency in some interactions is

negligible in respect to the volume of interactions in the whole

system. This is a strong hypothesis that will be studied through the

two applications in next sections.

2.2.3 No Synchronization

The third and last policy is to simply drop synchronization between

machines. It can be seen as a variation of the time window policy

with an infinite window size. This approach exploit the available

speed of all machines, however, we will see in section 4 obviously

that this policy is not fitted for all applications.

 To conclude, this section has presented the three

synchronization policies that will be studied in following sections.

With the synchronous approach (or strong synchronization), all

machines guaranty the correct execution for all parts of the

simulation but additional messages have to be exchanged and

induce more delays for each time step. Whereas, in asynchronous

approaches, machines take checkpoints independently without any

synchronization among them. Unfortunately, because of the

absence of synchronization, there is no guarantee that local time

steps are the same. In order to get rid of these disruptions, machines

have to roll back to older checkpoints.

 The problematic studied in this paper is thus to determine

whether we are able to keep macroscopic behaviours emergence

when relaxing synchronization constraints. This approach aim is to

gain performance by reducing synchronization costs and to

determine which kind of applications are robust with respect to

these synchronization issues.

3.0 AGENT AND ENVIRONMENT CONCEPTS

In MAS systems, agents and environment are the main concepts

that allows entities to perceive and act on a common medium. We

first describe what is an agent before detailing the importance of

the environment in a situated multi-agent simulation.

 An Intelligent Agent [1] is an autonomous entity which

observes its environment and acts by following its own goals.

Intelligent agents can use old knowledge or learn new one to

achieve their goals. They can be very simple or very complex as we

can see in table I. Agents can range from purely reactive agents

(simple strategy) to cognitive agents (complex strategy) by

involving abstract knowledge representation and planning systems.

67 Omar Rihawi et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 65–76

Simplest agents can be passive entities like an apple. A more

complex agent can be a door which is a reactive agent without

goals. More complex, cognitive agents can learn and update their

strategy. Agents are able to interpret their environment and try to

achieve their own goals. Depending on the application, we can have

a large number of agents like in a physical collision simulation

(mainly made of reactive agents) or only one cognitive agent (chess

player agent):

 The environment in a multi-agent system can be considered as

an agent container and an interaction mediator between agents.

Different environment types can be used for different application

types. In some applications, there is no spatial environment like in

financial markets simulations ATOM [18]. However, we are

mainly interesting in applications that have spatial environments.
 In our study, we distinguish two main spacial environment

types:

 Discrete Environments: like IODA [19],
 Continuous Environments: flocking model [16].

 These environments types are deduced from the type of

interactions that happens between agents. Depending on the

application domain, the environment can enforce spatial constraints

(soccer or collision simulations) or not (stock market simulations).

 When an environment has a spatial dimension, agents are

embodied, so two agents cannot be in the same place at the same

time. Within spatial environment, a distinction can be made

between discrete and continuous environments. In a discrete

context, the environment is made of a grid and agents move in this

grid by swapping between environment’s cells. In continuous

environments, the space is represented by ranges and agents have

floating positions. More details about environment properties can

be founded in [1].

4.0 DISTRIBUTED AGENT-BASED SIMULATORS

To achieve large scale agent-based simulations, we believe that the

distribution of a simulator on a computer network is necessary to

reach a high number of agents and interactions. A simple

distributed platform can be M machines with a communication

layer that informs others about simulation changes. Each machine

is able to build a partial view of the system, and with all other

machines we have the global view of the system. However, there

are different ways to distribute such simulations with its concepts

(agents and environment). In this paper, we will focus more on time

management and synchronization rather than the way of

distribution.

4.1 State of the Art

Many platforms already exist in the domain of distributed large

scale agent-based simulation: Repast [10], FLAME [11] (and

FLAME-GPU implementation [12]), AglobeX Simulation [13],

and DMASON [14] [15]. But, they do not support several

synchronization policies.

 Repast [10] provides components to build multi-agent

simulations on a network with a shared middleware between

machines, so simulator is free from all distribution considerations.

Distribution through a middleware do not take into account specific

optimizations that can be implemented to distribute multi-agent

simulation. Another approach proposed by Repast is HLA, but it is

focused on the coordination between different sequential

simulation toolkit and is not really designed to gain speedup.

 Other interesting works are D-MASON [6] and AglobeX [7]

platforms. D-MASON is based on a master/workers approach, the

master assigns a portion of the whole computation (like a set of

agents) to each worker. Then, for each simulation step, each worker

simulates the agents assigned and sends back the result of its

computation to each interested worker. AglobeX[13] also has been

built on the same mechanism and both platforms use simple models

as application: AglobeX uses an airplanes applications while D-

MASON uses a flocking model. These simple models do not

produce complex interactions. For example in flocking model,

birds will flock only by watching other birds and no interactions

between two birds can explode the communication costs. However,

in other classical models like prey-predator model, agents can

produce complex or conflicting actions. For example, if two wolves

want to eat the same sheep from different machines, then a protocol

of agreement must be provided to resolve these actions.

 To summarize, no platform can be considered as a test-bed of

our works, as all works are working only on strong

synchronization. Table 1 shows a comparison between all these

platforms:

Table 1 Comparison between platforms

Platform MaxNbOfAgents MaxNbOfMachines Model Policy

Repast 68 billions 32000 cores Triangles Model Strong sync only

DMASON 10 millions 64 Boids Strong sync only

FLAMEGPU 11000 GPU Pedestrian Crowds GPU-Strong Sync

AglobeX 6500 22 cores Airplanes Strong sync only

Our platform 20 millions 200 p2p-Machines Prey-predator model 3 different capabilities

Apple

Passive
(Object)

Door

Reactive
without
goals

Bird

Reactive
with goals

IBM's Chees
Player

Cognitive
Specialized

Human

Cognitive
Learner

Simple
Entity

Complex
Entity

68 Omar Rihawi et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 65–76

4.2 Testbed Description

To evaluate the impact of synchronization policies, we have

developed a distributed simulator. This simulator is based on a set

of machines (peer-to-peer network), that handle the simulation of a

subset of the environment with its agents. Each machine is

connected with all other machines, so the communication topology

is a fully connected graph. The distributed simulator can be run in

one of the three available synchronization policies: strong, time

window and no synchronization.

 Figure 1 shows 4 machines executing a distributed agent-

based simulation. Each machine consists of: a local simulator, a

communication unit and an environment part with its agents. The

local simulation is a top-manager layer in each machine, which

manages all tasks like: interactions between agents, receive

information from neighbourhood machines and local visualization.

Communication unit manages connections links between machines

for message exchange and informs local simulator about machines

time step (TS).

 In case of strong synchronization, each machine follows 7

main steps in each TS: 1) it sends information to all neighbours

about the environment state near them. 2) Then it waits for new

information from neighbours to inform local agents about the

neighbours’ environments. 3) After that, each machine asks local

agents about their next desired interactions. 4) Then, it sends the

external interactions, which are interactions between agents from

different machines, to neighbours. 5) Also, each machine receives

interactions from others. 6) And, the possible interactions should

be applied. 7) Finally, each machine draws its local environment

and it synchronizes to next time step.

Figure 1 Description of a distributed agent-based simulation on 4 machines, each machine consist of: local simulation, communication unit and part of the

environment with its agents. In strong synchronization: all steps (from 1 to 7) will be followed, whereas in flexible synchronization: receiving steps (like 2
and 5) can be passed to avoid communication delays

 To illustrate the main loop executed by each machine, we

have sketched two algorithms: algorithm 1 for strong

synchronization and algorithm 2 for flexible synchronizations.

Algorithm 1 for strong synchronization:

1. Sync for zero-TimeStep

2. While Running do

3. //Exchange information

4. //Local Interactions
5. Get List Of Interactions From Our Agents

6. Solve List Of Conflict Interactions

7. Get List Of External Interactions
8. While Not All Machines Are Satisfied do

9. Send External Interactions

10. Receiving From Others External Interactions
11. Send Acceptance For Others’ External Interactions

12. Receiving From Others Acceptance

13. End while
14. //Transferring Agents

15. Transfer Agents With Notifications

16. Receive Agents From Others
17. //Sync With Others

18. Receiving Messages

19. Sync With Others for next TimeStep
20. //Applying TimeStep’s Interactions And Drawing

21. Applying Local Interactions

22. Drawing

23. End While

Algorithm 2 for flexible synchronizations:

1. Sync for zero-TimeStep to begin together

2. While Running do

3. //Send and Receive Information If Exist Without Wait
4. //Local Interactions

5. Get List Of Interactions From Our Agents

6. Solve List Of Conflict Interactions

7. Get List Of External Interactions

8. //Without any wait

9. Send External Interactions
10. Receiving External Interactions If Exist Without Wait

11. Add Possible Interactions To Local Collection

12. //Transferring Agents
13. Transfer Agents Without Notifications

14. Receive Agents From Others If Exist Without Wait

15. // W Time-Window-Sync With Others
16. Receiving Messages

17. Send Next TimeStep Notification

18. Sync With Others On W TimeSteps If We Reach It
19. //Applying TimeStep’s Interactions And Drawing

20. Applying Local Interactions

21. Drawing

22. End While

 The three synchronization policies have similar

communication protocols with small differences. Algorithm 1

shows the states of a machine when it is running in strong

synchronization mode. Strong synchronization algorithm has in

69 Omar Rihawi et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 65–76

each communication state a notification, which is kind of

replying and acceptance from other machines. Especially for last

state of communication, all machines should be synced for next

TS and they are suspended until other machines are ready for next

TS.

 Algorithm 2 shows the two other mechanisms: time window

and no synchronization. In this algorithm, there is no notification

for any communications states, except the last state which is for

next TS. For time window policy, machine sends a notification of

its current TS, and it checks if it has permission for next TS.

Which is in our case, the difference between the local machine’s

TS and slowest machine’s TS must be less than W Steps (W is a

number of steps which can be determined by the user). Whereas,

in case of no synchronization, machines send only a notification

for next TS. It is similar to time window, but with an infinity

window W = ∞.

Figure 2 More than 5 million agents running on 50 machines

 To evaluate the scalability of our testbed, we have

implemented a simple flocking behaviour similar to Reynolds

[16] and made it run on a network made of 50 machines, where

each machine holds at the beginning of the simulation 100000

agents (Figure 2).

5.0 EXPERIMENTATIONS

In this section, we describe two applications that have been

implemented and benchmarked to quantify the impact of the three

proposed synchronization policies. It seems obvious that time

inconsistency have not the same effect in all applications. For

example, the simple boids application (Figure 2) can run without

synchronization and still produce the emerging flocking

behaviour. So, we want to determine with the following

experimentations the impact of synchronization policies on the

outcome of the simulation, more precisely on the conservation of

the expected macroscopic behaviours.

5.1 Two Extrema Models

To study the synchronizations impact, we have implemented two

applications. One is extremely affected by changing the policy of

synchronization, while the other is extremely not affected.

5.1.1 Prey-Predator (PP) or Lotka-Volterra Model

This model is a classical multi-agent application that involve two

kind of agents, preys and predators. Both kinds reproduce

themselves at a given rate, but predators seek and eat preys. If a

predator does not find preys quickly enough, it dies of starvation.

This application illustrates population co-evolution in a

simplified ecosystem. An example of such model is the wolf-

sheep-grass simulation proposed by Wilensky [17] that we have

implemented in our test-bed. In this example, wolf tries to find

and eat sheep, sheep searches for grass to eat and grass re-grows

at a given rate. Wolves and sheep can have energy when they find

something to eat, and then they can reproduce themselves.

 In normal situation, the number of wolves and the number

of sheep will be inversely proportional in some periods of the

simulation and directly proportional in others. If the number of

wolves increases, then they will eat more and more of sheep, and

the number of sheep will decrease. Then the wolves will not find

more sheep to eat and that will lead to decreasing in wolves

energy and then decreasing in number of wolves. After that, the

sheep will increase because there are no more wolves try to eat

them and again the number of wolves will increase as there are

more and more of sheep to eat.

 However, if we lose all wolves or all sheep, then the model

will be destroyed. That because, if we lose all sheep, then wolves

cannot find any sheep to eat, and all wolves will be died. Again,

if we lose all wolves, then the number of sheep will be increased

to infinite as there are no wolves to eat them. So, all types of

agents have to co-evolve to keep the model alive:

70 Omar Rihawi et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 65–76

5.1.2 Capture The Flag Model (CTF)

This second model has been build to illustrate the fact that if a

simulation outcome relies on timing issues, like population

growth speed, then synchronization policies can introduce a bias.

To achieve this goal, we propose the use of a simplified capture

the flag application with two competing populations (or teams).

For each team, we have two kind of agents: flag agents which

produce new attackers at a given rate, and attacker agents which

protect their flags or attack the other team (flags or attackers).

 However, attack action is very simple: if an attacker agent

from one team detects another agent from different team (attacker

or flag), then it will try to reach that agent and destroy it (both

agents should be dead). To enhance the stability of this model, we

add defence behaviour for attacker agents to protect their flags,

that can be by observing the number of team attackers around a

team flag and see if this number is small (less than N for

example), then the attacker agent will flock around the flag to

protect it from any attack from the other team:

 In both models, the macroscopic behaviour is considered as

a stability measure of the model. For Prey-Predator (PP) model,

the stability is to keep all populations in co-evolution during the

simulation. That mean in all time steps, we should have wolves

and sheep in the simulation, because if we lose one of these types,

the model is destroyed. For Capture The Flag (CTF) model, the

stability is to keep all flags of all teams alive and they produce

more and more attackers. If a team loses their flags, then its agents

should disappear, and the other team win.

5.2 Synchronization Policies Performances

We have executed experimentations on a network of machines

with similar hardware. Most experimentations have run until 2

million time steps and the only parameter modified is the time

window size. We have started with a time window with size = 0

strong synchronization, then 10 TS (between the fastest and

slowest machine), 100, 1000, 10000, 100000 and finally no

synchronization at all. Figure 3 Shows that no-synchronization

policy always provides the lowest execution time because it is

free from all communication delays. It shows that the simulation

reach 10000 TS in 3 hours only with no synchronization policy.

Whereas, it takes 6 hours (double time) in case of strong

synchronization.

 Consider that we have an emergency scenario of tsunami-

town simulation which can be calculated faster with no

synchronization policy than strong synchronization. Even, if

some agents fail to interact, but we can get the main macroscopic

behaviour. Then, we maybe save more lives in dangerous areas

with no synchronization policy than strong synchronization.

However, in some application like CTF, it can be unstable in case

of no synchronization.

Figure 3 No-synchronization always gives the maximum speed

Sheep
decrease

Wolves
increase

Wolves
decrease

Sheep
increase

Co-evolution

0

1

2

3

4

5

6

7

8

9

0 2000 4000 6000 8000 10000

Ex
e

cu
ti

o
n

 t
im

e
 (

H
o

u
rs

)

TS

Strong
Sync

TW-5TS

71 Omar Rihawi et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 65–76

Table 2 Summary table with results of three synchronization policies for two models

Model Strong-Sync Time-Window No-Sync

Wolf-Sheep-Grass WSG Stable Stable Stable

Capture The Flags CTF Stable Stable if W < n time step Unstable

 Table 2 shows results of the stability of both models. The

prey-predator model stay stable for long time (until 2 millions

TS), for all experimentations, the co-evolution of prey-predator

model has been preserved until we reach 2 million TS, even

without any synchronization. Thus, this application is stable with

all synchronization policies. Whereas CTF have been unstable in

case of no synchronization and also time window synchronization

after window size bigger than N (N depends on the initial

configuration).

 In next sections, we study first interactions effects between

agents on the stable model (Wolf-Sheep-Grass WSG model) and

see how interactions are impacted when we change the

synchronization policies. Then, we study the instability of CTF

model in details by exploring a biased initial configuration.

5.3 Interactions in Wolf-Sheep-Grass Model

As this model is stable for all synchronization policies, we study

in details how interactions are impacted. Table 3 shows some

facts on PP model in case of strong or no synchronization. It

shows that all properties are similar in both synchronization

policies, except Life-Circles. Life-Circle is the number of TS that

will be taken by the population to return to the same previous

state, or complete a phase of the co-evolution:

Table 3 Prey-predator model for two synchronization polices

Synchronization Avg

Life-circles

Max Nb of

sheep

Max Nb of

wolves

Min Nb of

sheep

Min Nb of

wolves

Max-age of

sheep

Max-age of

wolves

Strong-Sync 276.24 TS* 4281 1134 615 44 221 TS 153 TS*

No-Sync 270.43 TS* 3852 1142 612 53 215 TS 148 TS*

 Figures 4 & 5 show the effects of Prey-predator model when

synchronization policies changes. Both policies, strong

synchronization and no synchronization have the same behaviour

on prey-predator model, except that no synchronization is faster

in life circles for its agents (prey and predators). That because in

no synchronization, there are agents could fail to interact. For

example, sheep cannot find grass to eat or wolves cannot find

sheep to eat, then agents could have less energy and it will die to

starvation. Thus the life-circles are a bit shorter in no

synchronization than strong synchronization:

Figure 4 Both policies: strong-synchronization and no-Synchronization have the same behave on prey-predator model, but no-synchronization is faster in

life-circles

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000 2500 3000

N
b

 o
f

A
ge

n
ts

TS

SS-NbWolves SS-NbSheep NS-NbWolves NS-NbSheep

72 Omar Rihawi et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 65–76

Figure 5 Life circles of agents in prey-predator model for both policies: SS and NS

5.3.1 External Interactions

External interactions are interactions between agents that belong

to different machines. We have measured the evolution of

external interactions with different time windows ranging from 0

(strong synchronization), 2, 100 and until no synchronisation (all

tests have been executed for 100000 TS). Figure 6 shows how

much external interactions between agents are executed in the

prey-predator mode (with 5000 agents for each family: sheep,

wolves and grass). This graph shows that with strong

synchronization we have a lot of external interactions, this is

normal because information (about agents) can be sent and

received by other machines. But, and this is important, when there

is no synchronization or even for a small time window

synchronization, external interactions are significantly reduced.

Our explanation for that is even if we choose the time window of

only one time step, information about agents are sent between

machines, but they are not received in the corresponding time

step. Thus external interactions are reduced significantly:

Figure 6 Prey-predator model, External-interactions with different Synchronization polices

5.3.2 Invalid Time Step Interactions

In this test, we study the interactions on prey-predator model,

when machines are not on strong synchronization. We define

invalid interaction as an interaction between two agents from

different time step. Clearly, it represents interactions that are

temporally incoherent. This situation can appear for example

when two agents are coming from two different machines which

are not on the same time step. Figures 7 shows that the percentage

of invalid interactions increases when the W time window

increase. However, the percentage of invalid interaction is less

than 0.4 from the total number of interactions. In case of four

machines we have a double percentage than two machines, that

because agents can swap between 4 machines more than in case

of two machines.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 200 400 600 800 1000 1200

P
re

y

Predator

SS-NbSheep SS-NbGrass NS-NbSheep NS-NbGrass

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Ex
te

rb
al

 I
n

te
ra

ct
io

n
s

TS

SS=0TS TW=2TS

TW=100TS NS=∞

73 Omar Rihawi et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 65–76

Figure 7 Invalid interactions between two or four machines in prey-predator model

5.4 Instability of CTF Model

As the previous experimentations, we have run these simulations

on similar machines for 2 million TS and with a time window size

evolving from 0 to infinity. The first initial configuration that has

been explored was defined with one flag per machine. This

configuration, nearly like the prey-predator model, is stable in

respect to synchronization issues. If we choose another initial

configuration, like 20 flags per machine, we can get different

results. Table 4 shows that, for different sizes of time window

bigger than 100000 the model is not always stable.

Table 4 Capture The Flags Model: 20 flags per machine

TimeWindowSize 0 10 100 1000 10000 100000 ∞

CaptureTheFlags Stable Stable Stable Stable Stable Fail Fail

*’Stable’ Stable Model, ’Fail’ Not Stable Model, ’∞’ means no synchronization

 We have defined another initial configuration to evaluate the

instability degradation that is induced by synchronization policies

when machine load is not the same on all machines. This second

experimentation runs on three machines: the first one contains all

flags from the first population and the two others machines

contain only half flags of the second population (Figure 8). The

aim is to generate more load on one machine than others and to

provoke an unstable model: the second population should always

win because its attacker production will be higher (on two

machines):

Figure 8 Two blue flags in one Machine and two red flags in two different machines

 With this configuration, we ensure that the model is

unstable, the same population always win. But, the convergence

should be faster with more flexible synchronization policies, and

fastest in case of no synchronization at all. If we define the

Critical Time Step (CTS) as the necessary time step to completely

destroy the model if no synchronization has been used. For

capture the flag model, all flags of one population have been

disappeared. Then, Figure 9 shows that the number of flags has a

huge effect in the simulation, more flags mean less CTS to

completely destroy the model. This CTS time depends on the

initial configuration of the model, like the number of flags F and

communication delays between machines:

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2000 4000 6000 8000 10000

In
va

lid
 in

te
ra

ct
io

n
s/

To
ta

l

TS

2M-NS 2M-TW (1TS)

4M-NS 4M-TW (1TS)

74 Omar Rihawi et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 65–76

Figure 9 Capture The Flag Model: CTS vs Number of flags

 As in Figure 9, the CTS will decrease by increasing the

number of flags which have been used:

𝐶𝑇𝑆 =
α1

F
, α1 is constant

 However, CTS depends on the initial configuration and on

machines itself which have been used.

 If we define the Time-Step to Destroy (TSD) as the necessary

TS to completely destroy the model if W time window has been

used (TSD = CTS if and only if W = ∞ or no synchronization).

For this test, we study the time window size from 0 to infinity to

determine how much time steps are necessary before one team

disappear. Figure 10 shows that each configuration has a curve

with different scale, which is reduced by increasing the time

window W. It also shows that it is difficult to measure different

initial configurations (different number of flags) as the curves do

not have the same scales For that, we scale each curve to its CTS

(as each configuration has its own CTS). Figure 11 visualizes

results after scaling each curve in respect to its CTS. This figure

shows that the Time Step to Destroy (TSD) decreases if the time

window W increase.

Figure 10 Different configurations of Capture The Flag model with time window synchronization

0

100000

200000

300000

400000

500000

600000

0 10000 20000 30000 40000 50000

TS
D

Window TS

20 B vs 10+10 R Flags

10 B vs 5+5 R Flags

2 B vs 1+1 R Flags

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 5 10 15 20

C
TS

Nb of Flags

TwoMachines vs OneMachine

75 Omar Rihawi et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 65–76

Figure 11 TSD for different configurations of CTF Model with different sizes of TW (W)

According to the Figure 11:

𝑇𝑆𝐷/𝐶𝑇𝑆 =
α2

W/CTS
, α2 is constant

Then:

𝑇𝑆𝐷 =
α2 × CTS2

W

Again, each curve has more flags, will be destroyed with smaller

TS, we can replace:

𝐶𝑇𝐹 =
α1

F

Then:

𝑇𝑆𝐷 =
α

W × F2
, α = α1 × α22 is constant

 That means, TSD decreases if the flags number increases or

the time window W has been increased too. Figure 11 shows also

that, for all configurations the model stay stable for a small time

window. According to this figure and for all configurations, we

can divide each curve into two main parts. First with W ranging

from 0 to 30% of CTS, the model stay stable for a long time. So

we can give permissions of advancing in time step between

different machines until 30% of its critical time-step, and in this

part all curves have a strong effect to the time window. The

second part with W bigger than 30% of CTS, in this part the TSD

is decreased slowly according to W time window.

6.0 CONCLUSION

To simulate millions or billions of interacting agents, we have to

distribute our agent based simulator in order to scale it on network

machines. A safe approach consists in splitting the environment

into smaller parts and using a strong synchronization policy, but

it implies a high cost in message exchanges and execution time.
This paper has explored a relaxation of this constraint to speed up

execution time and has identified applications where this

relaxation do not degrade simulations outcome. We have studied

three synchronization policies for distributed multi-agent

simulations: strong synchronization, time window

synchronization and no synchronization. Experimentations show

that some applications, like prey-predator model, stay stable with

any synchronization policy. Whereas in others models, like

capture the flags, it can be strongly affected by changing these

policies. We have studied how interactions are changed when we

switch the synchronization policies on prey predator model and

we have explored in details the instability of capture the flags

model when a biased initial configuration is used.
 Experimentations presented in this paper are a first step, we

have to experiment other kind of applications to illustrate

synchronization policies impacts and see if results presented in

this paper are suitable for other applications. For example, an

emergency scenario of tsunami-town simulation which can be

calculated faster with no synchronization policy than strong

synchronization. Even, if some agents fail to interact, but we can

get the main macroscopic behaviour, and we may be able to save

more lives in such dangerous situation with no synchronization

policy than strong synchronization.

References:

[1] Russell, S. J., Norvig, P., Candy, J. F., Malik, J. M., Edwards, D. D.

1996. Artificial Intelligence: A Modern Approach. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA.

[2] Gold, T. 2003. Why Time Flows: The Physics of Past & Future.

Daedalus. 132(2): 37–40.

[3] Lamport, L. 1978. Ti Clocks, and the Ordering of Events in a

Distributed System. Commun. ACM 21. 558–565.

[4] Jefferson, D. R. 1985. Virtual Time. ACM Trans. 7: 404–425.

[5] Scerri, D., Drogoul, A., Hickmott, S., Padgham, L. 2010. An

Architecture for Modular Distributed Simulation with Agent-based

Models. In: AAMAS ’10: Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems,

Richland, SC, International Foundation for Autonomous Agents and

Multiagent Systems. 541–548.

[6] Siebert, J., Ciarletta, L., Chevrier, V. 2010. Agents and Artefacts for

Multiple Models Co-evolution: Building Complex System

Simulation as a Set Of Interacting Models. In: Proceedings of the 9th

International Conference on Autonomous Agents and Multiagent

Systems: volume 1 -Volume 1. AAMAS ’10, International
Foundation for Autonomous Agents and Multiagent Systems. 509–

516.

[7] Logan, B., Theodoropoulos, G. 2001. The Distributed Simulation of

Multiagent Systems. Proceedings of the IEEE. 89(2): 174–185.

[8] Fujimoto, R. 2000. Parallel and Distributed Simulation Systems.

Wiley Series on Parallel ad Distributed Computing. Wiley.

[9] Gupta, B., Rahimi, S., Yang, Y. 2007. A Novel Roll-back Mechanism

for Performance Enhancement of Asynchronous Checkpointing and

Recovery. Informatica, Slovenia. 31(1): 1–13.

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1

TS
D

/C
TS

W/CTS

2 Flags

10 Flags

20 Flags

76 Omar Rihawi et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 65–76

[10] Minson, R., Theodoropoulos, G. K. 2004 Distributing Repast Agent-

Based Simulations with Hla. In: In European Simulation
Interoperability Workshop. 04–046.

[11] Kiran, M., Richmond, P., Holcombe, M., Chin, L.S., Worth, D.,

Greenough, C. 2010. Flame: Simulating Large Populations of Agents

on Parallel Hardware Architectures. In: AAMAS ’10: Proceedings of

the 9th International Conference on Autonomous Agents and

Multiagent Systems, Richland, SC, International Foundation for

Autonomous Agents and Multiagent Systems. 1633–1636.

[12] Karmakharm, T., Richmond, P., Romano, D. 2010. Agent-based

Large Scale Simulation of PedestriansWith Adaptive Realistic
Navigation Vector Fields. In: Theory and Practice of Computer

Graphics. 67–74

[13] Šišlák, D., Volf, P., Jakob, M., Pěchouček, M. 2009. Distributed

Platform For Large-scale Agent-based Simulations. In: Agents for

Games and Simulations, Springer-Verlag, Berlin. 16–32

[14] Cordasco, G., Rosario, D.C., Ada, M., Dario, M., Vittorio, S.,

Carmine, S. 2011. A Framework for Distributing Agent-based

Simulations. In: In Proc. of The International Workshop on

Algorithms, Models and Tools for Parallel Computing on

Heterogeneous Platforms. HeteroPar'11, Bordeaux, France.

[15] Cosenza, B., Cordasco, G., De Chiara, R., Scarano, V. 2011.

Distributed Load Balancing for Parallel Agent-based Simulations. In:

Parallel, Distributed and Network-Based Processing (PDP), 19th

Euromicro International Conference on.

[16] Reynolds, C. 1999. Steering Behaviors for Autonomous Characters.

[17] Wilensky, U. 1997. Netlogo Wolf-Sheep Predation Model, Center

For Connected Learning And Computer-Based Modeling,

Northwestern University, Evanston, Il.

[18] P. Mathieu and O. Brandouy. 2010. A Generic Architecture for

Realistic Simulations of Complex Financial Dynamics. In Advances
in Practical Applications of Agents and Multiagent Systems, 8th

International conference on Practical Applications of Agents and

Multi-Agents Systems (PAAMS’2010). Springer. 185–197.

[19] Y. Kubera, P. Mathieu, and S. Picault. 2008. Interaction-oriented

Agent Simulations: From Theory to Implementation. In Proceedings

of the 18th European Conference on Artificial Intelligence

(ECAI’08). IOS Press. 383–387.

