View Article |
Empirical investigation of feature sets effectiveness in product review sentiment classification
Nurfadhlina Mohd Sharef1, Rozilah Rosli2.
Sentiment analysis classification has been typically performed by combining features that represent the dataset at hand. Existing works have employed various features individually such as the syntactical, lexical and machine learning, and some have hybridized to reach optimistic results. Since the debate on the best combination is still unresolved this paper addresses the empirical investigation of the combination of features for product review classification. Results indicate the Support Vector Machine classification model combined with any of the observed lexicon namely MPQA, BingLiu and General Inquirer and either the unigram or inte-gration of unigram and bigram features is the top performer.
Affiliation:
- Universiti Putra Malaysia, Malaysia
- Universiti Putra Malaysia, Malaysia
Download this article (This article has been downloaded 251 time(s))
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
3 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.1) |
Rank |
Q3 (Agricultural and Biological Sciences (all)) Q3 (Environmental Science (all)) Q3¬¬- (Computer Science (all)) Q3 (Chemical Engineering (all)) |
Additional Information |
SJR (0.174) |
|
|
|