View Article |
Parallel exponential smoothing using the bootstrap method in R for forecasting asteroid’s orbital elements
Riza, Lala Septem1, Putra, Syandi Mufti2, Nugroho, Eddy Prasetyo3, Utama, Judhistira Aria4, Simatupang, Ferry Mukharradi5.
Nowadays, large datasets become main intentions of researchers in many areas. However, a challenge that still remains mainly unresolved is the lack of strategies used for analysing large time-series datasets in parallel. Therefore, this research aims to design a model of exponential smoothing working on parallel computing by using the bootstrap method. Three parts will be considered in the model: data preprocessing using the bootstrap methods, parallel exponential smoothing, and aggregation of results to be the final predicted values. To implement the processes, some packages available in the R environment such as “foreach”, “forecast” and “doParallel” are utilised. R environment provides many packages for scientific computing, data analysis, time-series analysis and high performance computing. For testing and validating the proposed model and implementation, a case study in astronomy, i.e. the prediction of asteroid’s orbital elements, was done. Moreover, a comparison and analysis with the results produced by algorithm of Regularized Mix Variable Symplectic 4 Yarkovsky Effect (RMVS4-YE) is also presented in this paper to provide a high level of confidence on the proposed model.
Affiliation:
- Universitas Pendidikan Indonesia, Indonesia
- Universitas Pendidikan Indonesia, Indonesia
- Universitas Pendidikan Indonesia, Indonesia
- Universitas Pendidikan Indonesia, Indonesia
- Institut Teknologi Bandung, Indonesia
Download this article (This article has been downloaded 194 time(s))
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
3 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.1) |
Rank |
Q3 (Agricultural and Biological Sciences (all)) Q3 (Environmental Science (all)) Q3¬¬- (Computer Science (all)) Q3 (Chemical Engineering (all)) |
Additional Information |
SJR (0.174) |
|
|
|