View Article |
Direct conversion of glucose to 5-Hydroxymethylfurfural over H3PW12O40/TEOS heterogeneous catalyst
Afeeq Asyraf1, Siti Aishah Anuar2, Wan Nor Roslam Wan Isahak3.
5-Hydroxymethylfurfural (5-HMF) is a valuable bio-based intermediate designed from carbohydrate resources such as glucose (hexose) or fructose. In this work, direct conversion of glucose into 5-HMF was studied by analysing the activity of solid acid catalyst namely silica-supported phosphotungstic acid (H3PW12O40/TEOS) as a heterogeneous catalyst. The reactions were conducted in a three-neck conical flask using dimethyl sulfoxide (DMSO) as reaction solvent under different reaction time (1, 3 and 5 hours) and temperature (100, 115 and 130°C). The effect of phosphotungstic acid loading was also studied in this literature (5, 12.5 and 20% H3PW12O40). Thus, this paper aims to study the optimum reaction time, temperature and H3PW12O40 loading to give the maximum yield of 5-HMF via direct catalytic dehydration process. The prepared catalyst 20% H3PW12O40/TEOS shows promising results by displaying a yield of 5-HMF as high as 62% after 3 hours at 130°C reaction temperature in the presence of DMSO solvent. Since heteropoly acid is highly soluble in DMSO, thus H3PW12O40 supported in TEOS (H3PW12O40/TEOS) is a promising solid catalyst for the conversion of glucose into 5-HMF. The prepared catalyst can also be recovered and recycled easily without significant loss of performance.
Affiliation:
- Universiti Kebangsaan Malaysia, Malaysia
- Universiti Kebangsaan Malaysia, Malaysia
- Universiti Kebangsaan Malaysia, Malaysia
Toggle translation
Download this article (This article has been downloaded 101 time(s))
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
3 |
Immediacy Index
|
0.000 |
Rank |
0 |
|
|
|