View Article |
Crack-healing investigation in asphalt mixture with modified thermoplastic-bitumen composite
Mohd Suzeren Md Jamil1, Wan Naqiuddin Wan Zulrushdi2, Noor Nabilah Muhamad3.
This study aims to investigate the crack-healing of asphalt mixture by induction heating of bitumen-thermoplastic binder. This system employs a heterogeneous mixture, in which different percentages (2, 4, 6, and 8% by weigh) of thermoplastic healing agent (polyethylene (PE) and polypropylene (PP)) dissolve with the bitumen, respectively. Healing was achieved by heating the fractured asphalt composite to a specific temperature; in which heterogeneous blend has undergone random molecule diffusion and volumetric thermal expansion of healing agent within the matrix. The thermal properties in the bitumen-thermoplastic were characterized by means of dynamic mechanical thermal analysis (DMTA); in which the glass transition temperature (Tg) has been used as a reference for the healing process. The FTIR shows no chemical reaction between bitumen and thermoplastic. Three-point bending test was conducted to demonstrate details crack-healing capability in asphalt composite. The results show that 6% of PE and PP to the mixture of bitumen-thermoplastic has the highest tensile strength. The percentage of recovery was also measured through the healing cycle process using a three-point bending test. Overall, within the third healing cycle, asphalt composite with modified bitumen (with PP or PE) shows 98-55% of healing recovery. The best percentage recovery is using bitumen-PP mixture with a ratio of 94:6. The crack-healing process was also proven through the surface and cross-section asphalt morphology analyses using optical microscopy and scanning electron microscope (SEM).
Affiliation:
- Universiti Kebangsaan Malaysia, Malaysia
- Universiti Kebangsaan Malaysia, Malaysia
- Universiti Kebangsaan Malaysia, Malaysia
Toggle translation
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
6 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Web of Science (SCIE - Science Citation Index Expanded) |
Impact Factor
|
JCR (1.009) |
Rank |
Q4 (Multidisciplinary Sciences) |
Additional Information |
JCI (0.15) |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.4) |
Rank |
Q2 (Multidisciplinary) |
Additional Information |
SJR (0.251) |
|
|
|