View Article |
Investigation on downstream processing of industrial scale of flexirubin production using superpro designer
Muhammad Zainuddin Arriafdi1, Mohd Helmi Sani2, Wan Azlina Ahmad3, Muhd Nazrul Hisham Zainal Alam4.
The aim of this work is to utilize a process simulator SuperPro Designer v5.5 (Intelligent, NJ, USA) for investigation on the most optimum scenario for the recovery of flexirubin pigment that was produced from a fermentation process using Chryseobacterium artocarpi strain. Process flow sheeting was based on the production of 300 kg per annum of flexirubin. Production phase at 1000 L bioreactor (including steps for the inoculum development) and different scenarios/routes for recovery of flexirubin were considered. SuperPro designer process simulator allowed for the computation of overall operating cost and capital cost under various operating parameters. Results from simulation shows that all proposed downstream processing routes is capable of achieving a high degree of flexirubin recovery yield i.e. at least 94% (or greater). Operating cost was relatively low as the overall quantity of flexirubin was rather small. Capital cost for equipment purchasing however highly depending on the selection of unit procedures for recovery of flexirubin. Centrifugation unit accelerated the separation processes but it is costly compared to the dead-end filtration unit. The latter was found to be the bottleneck for the optimization step where high yield of flexirubin can be warranted at reduced capital cost by at least 40%.The aim of this work is to utilize a process simulator SuperPro Designer v5.5 (Intelligent, NJ, USA) for investigation on the most optimum scenario for the recovery of flexirubin pigment that was produced from a fermentation process using Chryseobacterium artocarpi strain. Process flow sheeting was based on the production of 300 kg per annum of flexirubin. Production phase at 1000 L bioreactor (including steps for the inoculum development) and different scenarios/routes for recovery of flexirubin were considered. SuperPro designer process simulator allowed for the computation of overall operating cost and capital cost under various operating parameters. Results from simulation shows that all proposed downstream processing routes is capable of achieving a high degree of flexirubin recovery yield i.e. at least 94% (or greater). Operating cost was relatively low as the overall quantity of flexirubin was rather small. Capital cost for equipment purchasing however highly depending on the selection of unit procedures for recovery of flexirubin. Centrifugation unit accelerated the separation processes but it is costly compared to the dead-end filtration unit. The latter was found to be the bottleneck for the optimization step where high yield of flexirubin can be warranted at reduced capital cost by at least 40%.
Affiliation:
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
Toggle translation
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
6 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.4) |
Rank |
Q3 (Engineering (all)) |
Additional Information |
SJR (0.191) |
|
|
|