View Article |
Fast improvised influential distance for the identification of influential observations in multiple linear regression
Habshah Midi1, Muhammad Sani2, Ismaeel, Shelan Saied3, Jayanthi Arasan4.
Influential observations (IO) are those observations that are responsible for misleading conclusions about the fitting of a multiple linear regression model. The existing IO identification methods such as influential distance (ID) is not very successful in detecting IO. It is suspected that the ID employed inefficient method with long computational running time for the identification of the suspected IO at the initial step. Moreover, this method declares good leverage observations as IO, resulting in misleading conclusion. In this paper, we proposed fast improvised influential distance (FIID) that can successfully identify IO, good leverage observations, and regular observations with shorter computational running time. Monte Carlo simulation study and real data examples show that the FIID correctly identify genuine IO in multiple linear regression model with no masking and a negligible swamping rate.
Affiliation:
- Universiti Putra Malaysia, Malaysia
- Federal University Dutsin-Ma, Nigeria
- University of Zakho, Iraq
- Universiti Putra Malaysia, Malaysia
Toggle translation
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
6 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Web of Science (SCIE - Science Citation Index Expanded) |
Impact Factor
|
JCR (1.009) |
Rank |
Q4 (Multidisciplinary Sciences) |
Additional Information |
JCI (0.15) |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.4) |
Rank |
Q2 (Multidisciplinary) |
Additional Information |
SJR (0.251) |
|
|
|