View Article |
Effect of Various Carbon Coating Techniques on the Electrochemical Performance of Li4Ti5O12 Synthesized by Sol-Gel Method
Priyono, Slamet1, Yuwono, Akhmad Herman2, Setiawan, Jan3, Widayatno, Wahyu Bambang4.
This study aimed to prepare spinel carbon-coated Li4Ti5O12 (LTO/C) via sol-gel reaction and applied as a high-performance lithium-ion battery anode. The LTO powder was coated using various carbon sources, super P (SP), sugar and PVDF-assisted SP. The crystal structure,
morphology, conductivity and electrochemical performance of the samples were examined using X-ray diffraction (XRD), Field Emission scanning electron microscopy (FESEM), Fourier Transform Infrared (FTIR) spectroscopy, Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry/Charge-discharge (CV/CD), respectively. The XRD analysis results showed that the samples contain highly crystalline spinel LTO as the main phase and rutile as impurity. The FESEM image showed that SP covers the entire LTO surface more homogenous than sugar. However, sugar carbon makes roughness on the LTO surface. FTIR spectra showed that the coating using sugar and PVDF still contain hydrocarbon element. Electrochemical performance evaluations showed that SP carbon-coated-LTO possesses higher lithium diffusion and specific capacity than pure LTO, while sugar-coated-LTO shows the lowest specific capacity. Moreover, the SP carbon-coated-LTO sample high-rate capability has improved during full cell evaluation, delivering a discharge capacity of 249, 231, 211, 194, 58, and 23 mAhg-1 at the charge or discharge current density of 0.05, 0.1, 0.5,1, 5, and 10 C, respectively
Affiliation:
- Universitas Indonesia, Depok, Indonesia, Indonesia
- Universitas Indonesia, Depok, Indonesia, Indonesia
- National Research and Innovation Agency, Tangerang Selatan 15310, Indonesia
- National Research and Innovation Agency, Tangerang Selatan 15310, Indonesia
Download this article (This article has been downloaded 15 time(s))
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
2 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.3) |
Rank |
Q3 (Electrical and Electronic Engineering)) Q4 (Electronic, Optical and Magnetic Materials) |
Additional Information |
SJR (0.298) |
|
|
|