View Article |
Preliminary study on bayesian extreme rainfall analysis: a case study of Alor Setar, Kedah, Malaysia
Annazirin Eli1, Mardhiyyah Shaffie2, Wan Zawiah, W.Z3.
Statistical modeling of extreme rainfall is essential since the results can often facilitate civil engineers and planners to estimate the ability of building structures to survive under the utmost extreme conditions. Data comprising of annual maximum series (AMS) of extreme rainfall in Alor Setar were fitted to Generalized Extreme Value (GEV) distribution using method of maximum likelihood (ML) and Bayesian Markov Chain Monte Carlo (MCMC) simulations. The weakness of ML method in handling small sample is hoped to be tackled by means of Bayesian MCMC simulations in this study. In order to obtain the posterior densities, non-informative and independent priors were employed. Performances of parameter estimations were verified by conducting several goodness-of-fit tests. The results showed that Bayesian MCMC method was slightly better than ML method in estimating GEV parameters.
Affiliation:
- International Islamic University Malaysia, Malaysia
- Universiti Kebangsaan Malaysia, Malaysia
- Universiti Kebangsaan Malaysia, Malaysia
Toggle translation
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
6 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Web of Science (SCIE - Science Citation Index Expanded) |
Impact Factor
|
JCR (1.009) |
Rank |
Q4 (Multidisciplinary Sciences) |
Additional Information |
JCI (0.15) |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.4) |
Rank |
Q2 (Multidisciplinary) |
Additional Information |
SJR (0.251) |
|
|
|