Articles uploaded in MyJurnal |
|
|
View Article |
Hybrid neural models for rice yields times forecasting
Ruhaidah Samsudin1, Puteh Saad2, Ani Shabri3.
n this paper, time series prediction is considered as a problem of missing value. A model for the determination of the missing time series value is presented. The hybrid model integrating autoregressive intergrated moving average (ARIMA) and artificial neural network (ANN) model is developed to solve this problem. The developed models attempts to incorporate the linear characteristics of an ARIMA model and nonlinear patterns of ANN to create a hybrid model. In this study, time series modeling of rice yield data in Muda Irrigation area. Malaysia from 1995 to 2003 are considered. Experimental results with rice yields data sets indicate that the hybrid model improve the forecasting performance by either of the models used separately.
Affiliation:
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
Download this article (This article has been downloaded 153 time(s))
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
6 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.4) |
Rank |
Q3 (Engineering (all)) |
Additional Information |
SJR (0.191) |
|
|
|
|
|