View Article |
Using SVMs for classification of cross-document relationships
Kumar, Yogan Jaya1, Naomie Salim2, Ahmed Hamza Osman3, Abuobieda, Albaraa4.
Cross-document Structure Theory (CST) has recently been proposed to facilitate tasks related to multidocument analysis. Classifying and identifying the CST relationships between sentences across topically related documents have since been proven as necessary. However, there have not been sufficient studies presented in literature to automatically identify these CST relationships. In this study, a supervised machine learning technique, i.e. Support Vector Machines (SVMs), was applied to identify four types of CST relationships, namely “Identity”, “Overlap”, “Subsumption”, and “Description” on the datasets obtained from CSTBank corpus. The performance of the SVMs classification was measured using Precision, Recall and F-measure. In addition, the results obtained using SVMs were also compared with those from the previous literature using boosting classification algorithm. It was found that SVMs yielded better results in classifying the four CST relationships.
Affiliation:
- Universiti Teknikal Malaysia Melaka, Malaysia
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
Download this article (This article has been downloaded 463 time(s))
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
3 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.1) |
Rank |
Q3 (Agricultural and Biological Sciences (all)) Q3 (Environmental Science (all)) Q3¬¬- (Computer Science (all)) Q3 (Chemical Engineering (all)) |
Additional Information |
SJR (0.174) |
|
|
|