View Article |
Numerical simulation of artificical hip joint movement for western and Japanese-style activities
Saputra, Eko1, Anwar, Iwan Budiwan2, Rifky Ismail3, Jamari, J4, van der Heide, Emile5.
A numerical simulation model for observing the artificial hip joint movement with respect to the range of motion during human activities is presented in this paper. There were two human activities discussed, i.e. Western-style and Japanese-style. Previous investigation has reported the range of motion on the artificial hip joint for Western-style and Japanese-style, measured from the postoperative total hip arthroplasty patients. The aim of this investigation is to observe the probability of prosthetic impingement and to calculate the von Mises stress during these activities using finite element analysis (FEA). The Western- style activities consist of picking up, getting up and sitting, while the Japanese-style activities consist of sitting on legs with fully flexed at the knee (seiza), squatting and sitting on legs with fully flexed at the knee (zarei). The FEA uses a three-dimensional nonlinear model and considers the variation of the acetabular liner cup positions. Result shows that a prosthetic impingement is found in the Western’s picking up activity. This activity induces a prosthetic impingement in a certain the acetabular liner cup position. In the Japanese-style activities there is no prosthetic impingement observed. However, a critical value in the range of motion was observed for the Japanese’s Zarei activity for certain the acetabular liner cup position. The acetabular liner cup positions influences the probability of prosthetic impingement.
Affiliation:
- Laboratory for Surface Technology and Tribology, Netherlands
- Laboratory for Surface Technology and Tribology, Netherlands
- Universitas Diponegoro, Indonesia
- Universitas Diponegoro, Indonesia
- Universitas Diponegoro, Indonesia
Toggle translation
Download this article (This article has been downloaded 123 time(s))
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
6 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.4) |
Rank |
Q3 (Engineering (all)) |
Additional Information |
SJR (0.191) |
|
|
|