Articles uploaded in MyJurnal |
|
|
View Article |
Brain tissue classification in magnetic resonance images
Sapideh Yazdani1, Rubiyah Yusof2, Alireza Karimian3, Amir Hossein Riazi4.
Automatic segmentation of brain images is a challenging problem due to the complex structure of brain images, as well as to the absence of anatomy models. Brain segmentation into white matter, gray matter, and cerebral spinal fluid, is an important stage for many problems, including the studies in 3-D visualizations for disease detection and surgical planning. In this paper we present a novel fully automated framework for tissue classification of brain in MR Images that is a combination of two techniques: GLCM and SVM, each of which has been customized for the problem of brain tissue segmentation such that the results are more robust than its individual components that is demonstrated through experiments. The proposed framework has been validated on brainweb dataset of different modalities, with desirable performance in the presence of noise and bias field. To evaluate the performance of the proposed method the Kappa similarity index is computed. Our method achieves higher kappa index (91.5) compared with other methods currently in use. As an application, our method has been used for segmentation of MR images with promising results.
Affiliation:
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
- University of Isfahan, Iran
- University of Tehran, Iran
Download this article (This article has been downloaded 122 time(s))
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
6 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.4) |
Rank |
Q3 (Engineering (all)) |
Additional Information |
SJR (0.191) |
|
|
|
|
|