View Article |
Simulation study on enhancing hydrogen production in an ocean thermal energy (OTEC) system utilizing a solar collector
Amyra M. Y1, Nor Azizi Othman2, Shamsul Sarip3, Yasuyuki Ikegami4, Mohd Alshafiq Tambi Chik5, Norazli Othman6, Ridzuan Yacob7, Hirofumi Hara8, Zuriati Zakaria9.
This article reports the simulation study on the performance of utilizing a solar collector at the inlet of an evaporator to provide auxiliary heat into a system for hydrogen generation in an OTEC cycle. The conventional method of OTEC is simulated by FORTRAN programming and the results were compared with the presence of solar collector on thesystem. In the simulation experimental, the incoming temperature of warm seawater was boosted by using a flat plate solar collector. For the purpose of the experiment, a 100 kW OTEC cycle that was designed incorporated a solar boosting capability. Its thermodynamic efficiency was then compared through a series of simulation involving several control parameters. The results reveal that the proposed solar boosted OTEC
enhanced the thermal efficiency, TE. Increase in solar power absorption can increase the net power output, thus increasing the amount of hydrogen produced. The results obtained provided insights, from a thermodynamic perspective, on the outcome of combining sustainable energy with solar thermal energy to improve the system performance.
Affiliation:
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
- Universiti Malaysia Terengganu, Malaysia
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
Toggle translation
Download this article (This article has been downloaded 132 time(s))
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
6 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.4) |
Rank |
Q3 (Engineering (all)) |
Additional Information |
SJR (0.191) |
|
|
|