View Article |
Flood risk pattern recognition by using environmetric technique: a case study in langat river basin
Ahmad Shakir Mohd Saudi1, Hafizan Juahir2, Azman Azid3, Mohd Ekhwan Toriman4, Mohd Khairul Amri Kamarudin5, Madihah Mohd Saudi6, Ahmad Dasuki Mustafa7, Mohammad Azizi Amran8.
This study looks into the downscaling of statistical model to produce and predict hydrological modelling in the study area based on secondary data derived from the Department of Drainage and Irrigation (DID) since 1982-2012. The combination of chemometric method and time series analysis in this study showed that the monsoon season and rainfall did not affect the water level, but the suspended solid, stream flow and water level that revealed high correlation in correlation test with p-value < 0.0001, which affected the water level. The Factor analysis for the variables of the stream flow, suspended solid and water level showed strong factor pattern with coefficient more than 0.7, and 0.987, 1.000 and 1.000, respectively. Based on the Statistical Process Control (SPC), the Upper Control Limit for water level, suspended solid and stream flow were 21.110 m3/s, 4624.553 tonnes/day, and 8.224 m/s, while the Lower Control Limit were 20.711 m, 2538.92 tonnes/day and 2.040 m/s. This shows that human development in the area gives high impact towards climate change and flood risk, and not the monsoon season. Prediction was carried out using the Artificial Neural Network (ANN) to classify risks into their own classes, and the rate of accuracy for the prediction was 97.1%. This meant that the points in the time series analysis which were located beyond Upper Control Limit were considered as High Risk class, and the probability for flood occurrence is very high. The other classes classified in this prediction are Caution Zone, Low Risk and No risk. This is important to set a trigger for warning system in the case of emergency response plan during flood.
Affiliation:
- Universiti Sultan Zainal Abidin, Malaysia
- Universiti Sains Malaysia, Malaysia
- Universiti Sultan Zainal Abidin, Malaysia
- Universiti Sultan Zainal Abidin, Malaysia
- Universiti Sultan Zainal Abidin, Malaysia
- Universiti Sultan Zainal Abidin, Malaysia
- Universiti Sultan Zainal Abidin, Malaysia
- Universiti Sultan Zainal Abidin, Malaysia
Toggle translation
Download this article (This article has been downloaded 141 time(s))
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
6 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.4) |
Rank |
Q3 (Engineering (all)) |
Additional Information |
SJR (0.191) |
|
|
|