Articles uploaded in MyJurnal |
|
|
View Article |
Feature selection and machine learning classification for malware detection
Ban Mohammed Khammas1, Alireza Monemi2, Joseph Stephen Bassi3, Ismahani Ismail4, Sulaiman Mohd Nor5, Muhammad Nadzir Marsono6.
Malware is a computer security problem that can morph to evade traditional detection methods based on known signature matching. Since new malware variants contain patterns that are similar to those in observed malware, machine learning techniques can be used to identify new malware. This work presents a comparative study of several feature selection methods with four different machine learning classifiers in the context of static malware detection based on ngrams analysis. The result shows that the use of Principal Component Analysis (PCA) feature selection and Support Vector Machines (SVM) classification gives the best classification accuracy using a minimum number of features.
Affiliation:
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
- Universiti Teknologi Malaysia, Malaysia
Toggle translation
Download this article (This article has been downloaded 109 time(s))
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
6 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.4) |
Rank |
Q3 (Engineering (all)) |
Additional Information |
SJR (0.191) |
|
|
|
|
|