Articles uploaded in MyJurnal |
|
|
View Article |
Leaf disease classification using artificial neural network
Syafiqah Ishak1, Mohd Hafiz Fazalul Rahiman2, Siti Nurul Aqmariah Mohd Kanafiah3, Hashim Saad4.
Nowadays, herb plants are importance to medical field and can give benefit to human. In this research, Phyllanthus Elegans Wall (Asin-Asin Gajah) is used to analyse and to classify whether it is healthy or unhealthy leaf. This plant was chosen because its function can cure breast cancer. Therefore, there is a need for alternative cure for patient of breast cancer rather than use the technology such as Chemotherapy, surgery or use of medicine from hospital. The purpose of this research to identify the quality of leaf and using technology in agriculture field. The process to analysis the leaf quality start from image acquisition, image processing, and classification. For image processing method, the most important for this part is the segmentation using HSV to input RGB image for the color transformation structure. The analysis of leaf disease image is applied based on colour and shape. Finally, the classification method use feed-forward Neural Network, which uses Back-propagation algorithm. The result shows comparison between Multi-layer Perceptron (MLP) and Radial Basis Function (RBF) and comparison between MLP and RBF shown in percentage of accuracy. MLP and RBF is algorithm for Neural Network. Conclusively, classifier of Neural Network shows better performance and more accuracy.
Affiliation:
- Universiti Malaysia Perlis, Malaysia
- Universiti Malaysia Perlis, Malaysia
- Universiti Malaysia Perlis, Malaysia
- Rimba Herba Perlis, Malaysia
Download this article (This article has been downloaded 143 time(s))
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
6 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.4) |
Rank |
Q3 (Engineering (all)) |
Additional Information |
SJR (0.191) |
|
|
|
|
|