Articles uploaded in MyJurnal |
|
|
View Article |
Improved density based algorithm for data stream clustering
Maryam Mousavi1, Azuraliza Abu Bakar2.
In recent years, clustering methods have attracted more attention in analysing and monitoring data streams. Density-based techniques are the remarkable category of clustering techniques that are able to detect the clusters with arbitrary shapes and noises. However, finding the clusters with local density varieties is a difficult task. For handling this problem, in this paper, a new density-based clustering algorithm for data streams is proposed. This algorithm can improve the offline phase of density-based algorithm based on MinPts parameter. The experimental results show that the proposed technique can improve the clustering quality in data streams with different densities.
Affiliation:
- National University of Malaysia, Malaysia
- National University of Malaysia, Malaysia
Download this article (This article has been downloaded 133 time(s))
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
6 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.4) |
Rank |
Q3 (Engineering (all)) |
Additional Information |
SJR (0.191) |
|
|
|
|
|