Articles uploaded in MyJurnal |
|
|
View Article |
Performance evaluation of region-growing based segmentation algorithms for segmenting the aorta
Hussain Rahman1, Fakhrud Din2, Sami ur Rahmana3, Sehatullah4.
Region-growing based image segmentation techniques, available for medical images, are reviewed in this paper. In digital image processing, segmentation of humans' organs from medical images is a very challenging task. A number of medical image segmentation techniques have been proposed, but there is no standard automatic algorithm that can generally be used to segment a real 3D image obtained in daily routine by the clinicians. Our criteria for the evaluation of different region-growing based segmentation algorithms are: ease of use, noise vulnerability, effectiveness, need of manual initialization, efficiency, computational complexity, need of training, information used, and noise vulnerability. We test the common region-growing algorithms on a set of abdominal MRI scans for the aorta segmentation. The evaluation results of the segmentation algorithms show that region-growing techniques can be a better choice for segmenting an object of interest from medical images.
Affiliation:
- University of Malakand, Pakistan
- University of Malakand, Pakistan
- University of Malakand, Pakistan
- University of Malakand, Pakistan
Download this article (This article has been downloaded 129 time(s))
|
|
Indexation |
Indexed by |
MyJurnal (2021) |
H-Index
|
6 |
Immediacy Index
|
0.000 |
Rank |
0 |
Indexed by |
Scopus 2020 |
Impact Factor
|
CiteScore (1.4) |
Rank |
Q3 (Engineering (all)) |
Additional Information |
SJR (0.191) |
|
|
|
|
|